IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/125440.html
   My bibliography  Save this paper

Optimum designs for clinical trials in personalized medicine when response variance depends on treatment

Author

Listed:
  • Duarte, Belmiro P.M.
  • Atkinson, Anthony C.

Abstract

We study optimal designs for clinical trials when the value of the response and its variance depend on treatment and covariates are included in the response model. Such designs are generalizations of Neyman allocation, commonly used in personalized medicine when external factors may have differing effects on the response depending on subgroups of patients. We develop theoretical results for D-, A-, E- and D (Formula presented.) -optimal designs and construct semidefinite programming (SDP) formulations that support their numerical computation. D-, A-, and E-optimal designs are appropriate for efficient estimation of distinct properties of the parameters of the response models. Our formulation allows finding optimal allocation schemes for a general number of treatments and of covariates. Finally, we study frequentist sequential clinical trial allocation within contexts where response parameters and their respective variances remain unknown. We illustrate, with a simulated example and with a redesigned clinical trial on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived under the assumption of known variances, converge asymptotically to allocations obtained through the sequential scheme. Procedures to use static and sequential allocation are proposed.

Suggested Citation

  • Duarte, Belmiro P.M. & Atkinson, Anthony C., 2024. "Optimum designs for clinical trials in personalized medicine when response variance depends on treatment," LSE Research Online Documents on Economics 125440, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:125440
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/125440/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:125440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.