IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2023-59.html
   My bibliography  Save this paper

Optimal Forecast Combination with Mean Absolute Error Loss

Author

Listed:
  • Felix Chan
  • Laurent Pauwels

Abstract

The optimal aggregation of forecasts produced either from models or expert judgements presents an interesting challenge for managerial decisions. Mean absolute error (MAE) and mean squared error (MSE) losses are commonly employed as criteria of optimality to obtain the weights that combine multiple forecasts. While much is known about MSE in the context of forecast combination, less attention has been given to MAE. This paper shows that the optimal solutions from minimizing either MAE or MSE loss functions, i.e., the optimal weights, are equivalent provided that the weights sum to one. The equivalence holds under mild assumptions and includes a wide class of symmetric and asymmetric error distributions. The theoretical results are supported by a numerical study that features skewed and fat-tailed distributions. The practical implications of combining forecasts with MAE and MSE optimal weights are investigated empirically with a small sample of data on expert forecasts on inflation, growth, and unemployment rates for the European Union. The results show that MAE weights are less sensitive to outliers, and MSE and MAE weights can be close to equivalent even when the sample is small.

Suggested Citation

  • Felix Chan & Laurent Pauwels, 2023. "Optimal Forecast Combination with Mean Absolute Error Loss," CAMA Working Papers 2023-59, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2023-59
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2023-11/59_2023_chan_pauwels_0.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    forecasting; forecast combination; optimization; mean absolute error; optimal weights;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2023-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.