IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Ordinal Egalitarian Solution for Finite Choice Sets

Listed author(s):
  • Simon Wilkie
  • John P. Conley

Rubinstein Safra and Thomson (1992) introduced the Ordinal Nash Bargaining Solution. They proved that Pareto Optimality, Ordinal Invariance, Ordinal Symmetry, and IIA characterize this solution. They restrict attention to a domain of social choice problem with an infinite set of basic alternatives. In this paper we show this restriction is necessary. More specifically, we demonstrate that no solution can satisfy their list of axioms on any finite domain nor even on the space of lotteries defined over a finite set of alternatives. We then introduce the Ordinal Egalitarian Bargaining Solution. We show both for a space of finite social choice problems and for the space of lotteries over a finite set of social alternatives, that this solution is characterized by the axioms of Pareto Optimality, Ordinal Invariance, Ordinal Symmetry, and Independence of Pareto Irrelevant Alternatives.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Econometric Society in its series Econometric Society 2004 North American Summer Meetings with number 662.

in new window

Date of creation: 11 Aug 2004
Handle: RePEc:ecm:nasm04:662
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:662. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.