Non-Markovian Regime Switching with Endogenous States and Time-Varying State Strengths
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Michael Dueker, 2004. "Non-Markovian Regime Switching with Endogenous States and Time-Varying State Strengths," Econometric Society 2004 Latin American Meetings 34, Econometric Society.
- Siddhartha Chib & Michael J. Dueker, 2004. "Non-Markovian regime switching with endogenous states and time-varying state strengths," Working Papers 2004-030, Federal Reserve Bank of St. Louis.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sylvia Kaufmann, 2014. "K-state switching models with time-varying transition distributions – Does credit growth signal stronger effects of variables on inflation?," Working Papers 14.04, Swiss National Bank, Study Center Gerzensee.
- Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021.
"Origins of monetary policy shifts: A New approach to regime switching in DSGE models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
- Yoosoon Chang & Junior Maih & Fei Tan, 2018. "Origins of Monetary Policy Shifts: A New Approach to Regime Switching in DSGE Models," CAEPR Working Papers 2018-011, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Kaufmann, Sylvia, 2015. "K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?," Journal of Econometrics, Elsevier, vol. 187(1), pages 82-94.
- Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012.
"Combination schemes for turning point predictions,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combination Schemes for Turning Point Predictions," Tinbergen Institute Discussion Papers 11-123/4, Tinbergen Institute.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Combination schemes for turning point predictions," Working Papers 2012_15, Department of Economics, University of Venice "Ca' Foscari".
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Combination schemes for turning point predictions," Working Paper 2012/04, Norges Bank.
- Xin Wei, 2020. "Dynamic Expectations Formation and U.S. Monetary Policy Regime Change," CAEPR Working Papers 2020-007, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
- Andrei A. Sirchenko, 2017. "An endogenous regime-switching model of ordered choice with an application to federal funds rate target," 2017 Papers psi424, Job Market Papers.
- Judex Hyppolite & Pravin Trivedi, 2012. "Alternative Approaches For Econometric Analysis Of Panel Count Data Using Dynamic Latent Class Models (With Application To Doctor Visits Data)," Health Economics, John Wiley & Sons, Ltd., vol. 21(S1), pages 101-128, June.
- Sinclair Tara M, 2009. "Asymmetry in the Business Cycle: Friedman's Plucking Model with Correlated Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-31, December.
- Chaojun Li & Yan Liu, 2020. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime-Switching Models with Time-Varying Transition Probabilities," Papers 2010.04930, arXiv.org, revised Dec 2021.
- Mark W. French, 2005. "A nonlinear look at trend MFP growth and the business cycle: result from a hybrid Kalman/Markov switching model," Finance and Economics Discussion Series 2005-12, Board of Governors of the Federal Reserve System (U.S.).
More about this item
Keywords
; ;JEL classification:
- F42 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Policy Coordination and Transmission
- C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2004-10-30 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/ecm/nasm04/600.html