IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Max-Convolution Approach to Equilibrium Models with Indivisibilities

Listed author(s):
  • Zaifu YANG
  • Ning SUN
Registered author(s):

    This paper studies a competitive market model for trading indivisible commodities. Commodities can be desirable or undesirable. Agents' preferences depend on the bundle of commodities and the quantity of money they hold. We assume that agents have quasi-linear utilities in money. Using the max-convolution approach, we demonstrate that the market has a Walrasian equilibrium if and only if the potential market value function is concave with respect to the total initial endowment of commodities. We then identify sufficient conditions on each individual agent's behavior. In particular, we introduce a class of new utility functions, called the class of max-convolution concavity preservable utility functions. This class of utility functions covers both the class of functions which satisfy the gross substitutes condition of Kelso and Crawford (1982), or the single improvement condition, or the no complementarities condition of Gul and Stacchetti (1999), and the class of discrete concave functions of Murota and Shioura (1999).

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Econometric Society in its series Econometric Society 2004 Far Eastern Meetings with number 564.

    in new window

    Date of creation: 11 Aug 2004
    Handle: RePEc:ecm:feam04:564
    Contact details of provider: Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:564. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.