IDEAS home Printed from
   My bibliography  Save this paper

Likelihood Based Estimation in a Panel Setting


  • Peter Schmidt


This paper considers the extension to panel data of models that are specified cross-sectionally in terms of a likelihood. It considers specifically the estimation of stochastic frontier models but the same issue arises in many other models. The model can be estimated for any single value of the time-index t by maximizing a likelihood that depends on the distribution of yit given xit. Estimation in the panel could be based on the joint distribution of yi1,...,yiT given xi1,...,xiT. Many different joint distributions may exist that imply the given marginal distributions of the yit separately, however, and except in the normal case none is "obviously" correct. The paper observes the well-known fact that maximizing a quasi-likelihood that assumes independence yields consistent estimates, and it shows how to obtain asymptotically correct standard errors. It shows how to use GMM methods to improve on the quasi-MLE, without assuming any specific form of the joint distribution, and derives the condition under which there is or is not an improvement. Finally, it shows how copulas can be used to construct joint distributions. It addresses the question of whether or not there are any copulas with the robustness property that the quasi-MLE is consistent even if the assumed copula is incorrect.

Suggested Citation

  • Peter Schmidt, 2004. "Likelihood Based Estimation in a Panel Setting," Econometric Society 2004 Australasian Meetings 339, Econometric Society.
  • Handle: RePEc:ecm:ausm04:339

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    3. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    4. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    5. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    6. Baltagi, Badi H. & Li, Qi, 1995. "Testing AR(1) against MA(1) disturbances in an error component model," Journal of Econometrics, Elsevier, vol. 68(1), pages 133-151, July.
    7. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, vol. 39(2), pages 359-382, March.
    8. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    9. Magnus, J.R., 1982. "Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood," Other publications TiSEM 9ffb33fe-f5af-470f-b405-f, Tilburg University, School of Economics and Management.
    10. Holtz-Eakin, Douglas, 1994. "Public-Sector Capital and the Productivity Puzzle," The Review of Economics and Statistics, MIT Press, vol. 76(1), pages 12-21, February.
    11. Magnus, Jan R., 1982. "Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 239-285, August.
    12. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    13. Boozer, Michael A., 1997. "Econometric Analysis of Panel Data Badi H. Baltagi Wiley, 1995," Econometric Theory, Cambridge University Press, vol. 13(05), pages 747-754, October.
    14. Kelejian, Harry H. & Robinson, Dennis P., 1992. "Spatial autocorrelation : A new computationally simple test with an application to per capita county police expenditures," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 317-331, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    panel data; likelihood; frontier models;

    JEL classification:

    • A - General Economics and Teaching


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:339. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.