IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-288340.html
   My bibliography  Save this paper

High-Dimensional Functional Factor Models

Author

Listed:
  • Marc Hallin
  • Gilles Nisol
  • Shahin Tavakoli

Abstract

In this paper, we set up the theoretical foundations for a high-dimensional functional factor model approach in the analysis of large panels of functional time series (FTS). We first establish a representation result stating that if the first r eigenvalues of the covariance operator of a cross-section of N FTS are unbounded as N diverges and if the (r + 1) th one is bounded, then we can represent each FTS as a sum of a common component driven by r factors, common to (almost) all the series, and a weakly cross-correlated idiosyncratic component (all the eigenvalues of the idiosyncratic covariance operator are bounded as N !1). Our model and theory are developed in a general Hilbert space setting that allows for panels mixing functional and scalar time series. We then turn to the estimation of the factors, their loadings, and the common components. We derive consistency results in the asymptotic regime where the number N of series and the number T of time observations diverge, thus exemplifying the “blessing of dimensionality” that explains the success of factor models in the context of high-dimensional (scalar) time series. Our results encompass the scalar case, for which they reproduce and extend, under weaker conditions, well-established results (Bai & Ng 2002).We provide numerical illustrations that corroborate the convergence rates predicted by the theory, and provide finer understanding of the interplay between N and T for estimation purposes. We conclude with an empirical illustration on a dataset of intraday S&P100 and Eurostoxx 50 stock returns, along with their scalar overnight returns.

Suggested Citation

  • Marc Hallin & Gilles Nisol & Shahin Tavakoli, 2019. "High-Dimensional Functional Factor Models," Working Papers ECARES 2019-16, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/288340
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/288340/3/2019-16-HALLIN_NISOL_TAVAKOLI_high-dimensional.pdf
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.

    More about this item

    Keywords

    Functional time series; High-dimensional time series; Factor model; Panel data; Functional data analysis..;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/288340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.