IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/469.html
   My bibliography  Save this paper

The Greedy Heuristic Applied to a Class of Set Partitioning and Subset Selection Problems

Author

Listed:
  • Richard Engelbrecht-Wiggans

Abstract

The greedy heuristic may be used to obtain approximate solutions to integer programming problems. For some classes of problems, notably knapsack problems related to the coin changing problem, the greedy heuristic results in optimal solutions. However, the greedy heuristic does quite poorly at maximizing submodular set functions. This paper considers a class of set partitioning and subset selection problems. Results similar to those for maximizing submodular set functions are obtained for less restricted objective functions. The example used to show how poorly the heuristic does is motivated by a problem arising from an actual auction; the negative results are not mere mathematical pathologies but genuine shortcomings of the greedy heuristic. The greedy heuristic is quite successful at solving a class of knapsack problems related to the coin changing problem. Chang and Korsh [2], Hu and Lenard [5], Johnson and Kernighan [7], and Magazine, Nemhauser, and Trotter [8] show that the greedy heuristic results in optimal solutions for such problems. Problems of optimal subset selection have been studied by Boyce, Farhi, and Weischedel [1], indicating the need for a simply heuristic for obtaining approximate solutions. Fisher, Nemhauser, and Wolsey [4, 9, 10] have shown that the greedy heuristic may result in a solution for problems of maximizing submodular set functions with a value which is a relatively small fraction of the optimum. This paper derives similar results for a wider class of set partitioning and subset selection problems. The problem is formulated in the first section of the paper. Although the motivating problem results in a set partitioning problem, the results of the later sections apply as well to a wider class of subset selection problems. The more general problem statement is given as problem II; however, most of the discussion uses examples from the more restrictive problem I. The second section considers various possible restrictions to be placed on the objective function. The conditions may be stated in terms of either of the problem statements; the two forms of the conditions are shown to be essentially equivalent. Included among the possibilities are submodular set functions and several alternatives which are relaxations of submodularity. The relative generality of the various possibilities is illustrated by a couple of simple examples. The next two sections contain the main results of the paper. Objective functions which are "normal," "monotonic," and "discounted" are considered first. For such cases, the greedy heuristic solution is shown to have a value of at least 1/m of the optimal value, where m is the cardinality of the largest feasible subsets. The third section concludes by presenting a class of examples for which the greedy solution value is arbitrarily little more than the bound established above. Similar bounds may be obtained if the "discounted" condition is replaced by "variably discountedness," although now the bounds must be functions of the variable discounting functions. Again, a lower bound is derived for the greedy solution value. The section concludes by presenting a class of examples for which the greedy solution value is arbitrarily little more than this bound. The last section is an attempt to reassure the reader that the above results are not simply pathological cases. An actual real estate auction [6] is briefly described. This real world problem is used to motivate bidding functions (of two hypothetical bidders) similar to those used to establish the tightness of the bound in sections three and four. This discussion suggests that the results are not mere mathematical pathologies and that, from many a practical viewpoint, the greed heuristic is not a satisfactory algorithm for obtaining optimal solutions to set partitioning and subset selection problems.

Suggested Citation

  • Richard Engelbrecht-Wiggans, 1977. "The Greedy Heuristic Applied to a Class of Set Partitioning and Subset Selection Problems," Cowles Foundation Discussion Papers 469, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:469
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d04/d0469.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. J. Magazine & G. L. Nemhauser & L. E. Trotter, 1975. "When the Greedy Solution Solves a Class of Knapsack Problems," Operations Research, INFORMS, vol. 23(2), pages 207-217, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DePaolo, Concetta A. & Rader, David Jr., 2007. "A heuristic algorithm for a chance constrained stochastic program," European Journal of Operational Research, Elsevier, vol. 176(1), pages 27-45, January.
    2. Mathur, Kamlesh & Venkateshan, Prahalad, 2007. "A new lower bound for the linear knapsack problem with general integer variables," European Journal of Operational Research, Elsevier, vol. 178(3), pages 738-754, May.
    3. Yamamoto, Ken, 2014. "Fractal patterns related to dividing coins," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 51-57.
    4. Deineko, Vladimir G. & Woeginger, Gerhard J., 2011. "Unbounded knapsack problems with arithmetic weight sequences," European Journal of Operational Research, Elsevier, vol. 213(2), pages 384-387, September.
    5. Steffen Goebbels & Frank Gurski & Jochen Rethmann & Eda Yilmaz, 2017. "Change-making problems revisited: a parameterized point of view," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1218-1236, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.