IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1791.html
   My bibliography  Save this paper

Second-order Refinement of Empirical Likelihood for Testing Overidentifying Restrictions

Author

Listed:

Abstract

This paper studies second-order properties of the empirical likelihood overidentifying restriction test to check the validity of moment condition models. We show that the empirical likelihood test is Bartlett correctable and suggest second-order refinement methods for the test based on the empirical Bartlett correction and adjusted empirical likelihood. Our second-order analysis supplements the one in Chen and Cui (2007) who considered parameter hypothesis testing for overidentified models. In simulation studies we find that the empirical Bartlett correction and adjusted empirical likelihood assisted by bootstrapping provide reasonable improvements for the properties of the null rejection probabilities.

Suggested Citation

  • Yukitoshi Matsushita & Taisuke Otsu, 2011. "Second-order Refinement of Empirical Likelihood for Testing Overidentifying Restrictions," Cowles Foundation Discussion Papers 1791, Cowles Foundation for Research in Economics, Yale University, revised Jan 2012.
  • Handle: RePEc:cwl:cwldpp:1791
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d17/d1791.pdf
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:econom:v:200:y:2017:i:1:p:1-16 is not listed on IDEAS

    More about this item

    Keywords

    Empirical likelihood; GMM; Overidentification test; Bartlett correction; Higher order analysis;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1791. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.