IDEAS home Printed from https://ideas.repec.org/p/ctl/louvre/1994034.html
   My bibliography  Save this paper

Fil du rasoir et chocs sur les rendements d’échelle

Author

Listed:
  • Jérôme GLACHANT

    (Université d’Evry et M.A.D., Université de Paris I)

Abstract

Le sentier de croissance à taux constant 'endogène' peut être vu comme un nouveau fil du rasoir. Son existence repose sur la stricte égalité à un des rendements d'échelle vis-à-vis des facteurs accumulables. Nous étendons cette constatation en étudiant le sentier de croissance d'une économie où les rendements d'échelle, unitaires en espérance, sont soumis à des chocs stochastiques. La propriété de croissance ne résiste pas à l'introduction de ces chocs : le processus stochastique suivi par le stock de capital est stationnaire au sens fort. Cependant, l'économie ne converge pas pour autant vers un état stationnaire stable : la distribution limite du capital n'admet pas d'espérance. Nous commentons ensuite ces résultats pour en tirer quelques enseignements généraux.

Suggested Citation

  • Jérôme GLACHANT, 1994. "Fil du rasoir et chocs sur les rendements d’échelle," Discussion Papers (REL - Recherches Economiques de Louvain) 1994034, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  • Handle: RePEc:ctl:louvre:1994034
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/40724062
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014. "Modeling tails of aggregate economic processes in a stochastic growth model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.

    More about this item

    JEL classification:

    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ctl:louvre:1994034. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sebastien SCHILLINGS). General contact details of provider: http://edirc.repec.org/data/iruclbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.