IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Ruin probabilities in a finite-horizon risk model with investment and reinsurance

  • Runggaldier, Wolfgang
  • Romera, Rosario
Registered author(s):

    A finite horizon insurance model is studied where the risk/reserve process can be controlled by reinsurance and investment in the financial market. Obtaining explicit optimal solutions for the minimizing ruin probability problem is a difficult task. Therefore, we consider an alternative method commonly used in ruin theory, which consists in deriving inequalities that can be used to obtain upper bounds for the ruin probabilities and then choose the control to minimize the bound. We finally specialize our results to the particular, but relevant, case of exponentially distributed claims and compare for this case our bounds with the classical Lundberg bound.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws103721.

    in new window

    Date of creation: Sep 2010
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws103721
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws103721. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.