IDEAS home Printed from
   My bibliography  Save this paper

Singular random matrix decompositions: distributions


  • Díaz García, José A.
  • González Farías, Graciela


Assuming that Y has a singular matrix variate elliptically contoured distribution with respect to the Hausdorff measure, the distributions of several matrices associated to QR, modified QR, SV and Polar decompositions of matrix Y are determined, for central and non-central, non-singular and singular cases, as well as their relationship to the Wishart and Pseudo-Wishart generalized singular and non-singular distributions. We present a particular example for the Karhunen-Lòeve decomposition. Some of these results are also applied to two particular subfamilies of elliptical distributions, the singular matrix variate normal distribution and the singular matrix variate symmetric Pearson type VII distribution.

Suggested Citation

  • Díaz García, José A. & González Farías, Graciela, 2002. "Singular random matrix decompositions: distributions," DES - Working Papers. Statistics and Econometrics. WS ws024211, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws024211

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
    2. Goodall, Colin & Mardia, Kanti V., 1992. "The noncentral Bartlett decompositions and shape densities," Journal of Multivariate Analysis, Elsevier, vol. 40(1), pages 94-108, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws024211. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.