IDEAS home Printed from
   My bibliography  Save this article

Pseudo-inverse multivariate/matrix-variate distributions


  • Zhang, Zhihua


The Moore-Penrose inverse of a singular or nonsquare matrix is not only existent but also unique. In this paper, we derive the Jacobian of the transformation from such a matrix to the transpose of its Moore-Penrose inverse. Using this Jacobian, we investigate the distribution of the Moore-Penrose inverse of a random matrix and propose the notion of pseudo-inverse multivariate/matrix-variate distributions. For arbitrary multivariate or matrix-variate distributions, we can develop the corresponding pseudo-inverse distributions. In particular, we present pseudo-inverse multivariate normal distributions, pseudo-inverse Dirichlet distributions, pseudo-inverse matrix-variate normal distributions and pseudo-inverse Wishart distributions.

Suggested Citation

  • Zhang, Zhihua, 2007. "Pseudo-inverse multivariate/matrix-variate distributions," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1684-1692, September.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1684-1692

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
    2. José Díaz-García & Ramón Gutiérrez-Jáimez, 2005. "Functions of singular random matrices with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 475-487, December.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1684-1692. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.