IDEAS home Printed from https://ideas.repec.org/p/crd/wpaper/08004.html

On relative efficiency of Quasi-MLE and GMM estimators of covariance structure models

Author

Abstract

Optimal GMM is known to dominate Gaussian QMLE in terms of asymptotic efficiency (Chamberlain, 1984). I derive a new condition under which QMLE is as efficient as GMM for a general class of covariance structure models. The condition trivially holds for normal data but also identifies non-normal cases for which Gaussian QMLE is efficient.

Suggested Citation

  • Artem Prokhorov, 2008. "On relative efficiency of Quasi-MLE and GMM estimators of covariance structure models," Working Papers 08004, Concordia University, Department of Economics.
  • Handle: RePEc:crd:wpaper:08004
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prokhorov, Artem, 2012. "Second order bias of quasi-MLE for covariance structure models," Economics Letters, Elsevier, vol. 114(2), pages 195-197.
    2. Damba Lkhagvasuren, 2009. "Large Locational Differences in Unemployment Despite High Labor Mobility: Impact of Moving Cost on Aggregate Unemployment and Welfare," Working Papers 09009, Concordia University, Department of Economics, revised Mar 2010.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crd:wpaper:08004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Economics Department (email available below). General contact details of provider: https://edirc.repec.org/data/deconca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.