IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2241.html

Solving infinite-dimensional optimizaiton problems by polynomial approximation

Author

Listed:
  • DEVOLDER, Olivier
  • GLINEUR, François
  • NESTEROV, Yurii

Abstract

In this paper, we solve a class of convex infinite-dimensional optimization problems using a numerical approximation method that does not rely on discretization. Instead, we restrict the decision variable to a sequence of finite-dimensional linear subspaces of the original infinite-dimensional space and solve the corresponding finite-dimensional problems in a efficient way using structured convex optimization techniques. We prove that, under some reasonable assumptions, the sequence of these optimal values converges to the optimal value of the original infinite-dimensional problem and give an explicit description of the corresponding rate of convergence.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2010. "Solving infinite-dimensional optimizaiton problems by polynomial approximation," LIDAM Reprints CORE 2241, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2241
    Note: In : M. Diehl, F. Glineur, E. Jarlebring and W. Michiels (eds.), Recent Advances in Optimization and its Applications in ENgineering, Heidelberg, Springer, 37-46, 2010
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Jubril, A.M. & Olaniyan, O.A. & Komolafe, O.A. & Ogunbona, P.O., 2014. "Economic-emission dispatch problem: A semi-definite programming approach," Applied Energy, Elsevier, vol. 134(C), pages 446-455.
    3. Kristina Rognlien Dahl, 2019. "A convex duality approach for pricing contingent claims under partial information and short selling constraints," Papers 1902.10492, arXiv.org.
    4. Kristina Rognlien Dahl, 2019. "Management of a hydropower system via convex duality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 43-71, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.