IDEAS home Printed from
   My bibliography  Save this paper

The real estate risk premium: A developed/emerging country panel data analysis


  • D’ARGENSIO, John-John

    (CADIM, Caisse de depot et placement du Québec)

  • LAURIN, Frédéric

    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))


The objective of this paper is to identify the determinants of office capitalization rates for a panel of 52 countries (developed and emerging countries) between 2000 and 2006. Our assumption, based on a Capital Asset Pricing Model, is that the capitalization rate should be at least proportional to the country’s risk perception, as measured by the risk premium on the 10-year government bond yield. Because of the endogeneity of the latter variable, our empirical methodology requires that we estimate first a model explaining the 10-year bond yield. It will be the occasion to discuss the determinants of the risk premium on the bond market. Using a SURE random effect Hausman-Taylor estimator (Hausman & Taylor, 1981), we also take into account the possible correlation between the country risk characteristics on the bond markets and those that determine the real estate market. Our results show that government bond yield is the main determinant of the capitalization rate. We estimate that a 1 percentage point increase in the government bond yield will raise the capitalization rate by about 0.19 percentage point. Real estate variables play also a role, but to a lesser extent. Turning to determinants of the 10-year bond yield, macroeconomic fundamentals are significant determinants of the country risk premium, especially the capacity to honor short-term financial engagements. In addition, the country’s risk history has also very important effect on the investors’ current risk perception.

Suggested Citation

  • D’ARGENSIO, John-John & LAURIN, Frédéric, 2008. "The real estate risk premium: A developed/emerging country panel data analysis," CORE Discussion Papers 2008004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2008004

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    2. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
    3. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 365-386.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    6. Bauwens, L. & Hafner, C.M. & Rombouts, J.V.K., 2007. "Multivariate mixed normal conditional heteroskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3551-3566, April.
    7. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    8. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
    9. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
    12. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    13. Gikas A. Hardouvelis & Panayiotis Theodossiou, 2002. "The Asymmetric Relation Between Initial Margin Requirements and Stock Market Volatility Across Bull and Bear Markets," Review of Financial Studies, Society for Financial Studies, vol. 15(5), pages 1525-1560.
    14. Chris Brooks, 2005. "Autoregressive Conditional Kurtosis," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 399-421.
    15. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    16. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    17. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    18. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    19. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    20. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    21. Markus Haas & Stefan Mittnik & Marc Paolella, 2006. "Modelling and predicting market risk with Laplace-Gaussian mixture distributions," Applied Financial Economics, Taylor & Francis Journals, vol. 16(15), pages 1145-1162.
    22. Tucker, Alan L & Pond, Lallon, 1988. "The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 638-647, November.
    23. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    24. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    25. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    26. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • R33 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Nonagricultural and Nonresidential Real Estate Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2008004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.