IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2025s-29.html
   My bibliography  Save this paper

Data-Driven Learning About Trend Productivity Growth

Author

Listed:
  • Eiji Goto
  • Jan P.A.M. Jacobs
  • Simon van Norden

Abstract

We investigate the causes of changing productivity growth trend perceptions using a novel state-space framework for statistically efficient estimation of growth trends in the presence of data revision. Uncertainty around contemporary US productivity growth trends has been exacerbated by data revisions that typically occur several years after the initial data release, as well as by publication lags. However, the largest source of revisions in perceived trends comes from future realizations of productivity growth. This underlines the importance of estimation uncertainty in estimates of trend productivity growth. Nous étudions les causes des changements dans les perceptions relatives aux tendances de croissance de la productivité en utilisant un cadre d’espace d’état novateur, permettant une estimation statistiquement efficiente des tendances de croissance en présence de révisions des données. L’incertitude entourant les tendances contemporaines de la croissance de la productivité aux États-Unis a été amplifiée par les révisions des données, qui interviennent généralement plusieurs années après leur première publication, ainsi que par les délais de diffusion. Toutefois, la principale source de révisions des tendances perçues provient des réalisations futures de la croissance de la productivité. Cela souligne l’importance de l’incertitude d’estimation dans les évaluations de la tendance de la productivité.

Suggested Citation

  • Eiji Goto & Jan P.A.M. Jacobs & Simon van Norden, 2025. "Data-Driven Learning About Trend Productivity Growth," CIRANO Working Papers 2025s-29, CIRANO.
  • Handle: RePEc:cir:cirwor:2025s-29
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2025s-29.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E6 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2025s-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.