IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp2288.html
   My bibliography  Save this paper

Density and Risk Prediction with Non-Gaussian COMFORT Models

Author

Listed:
  • Marc S. Paolella

    (University of Zurich - Department of Banking and Finance; Swiss Finance Institute)

  • Pawel Polak

    (Stony Brook University-Department of Applied Mathematics and Statistics)

Abstract

The CCC-GARCH model, and its dynamic correlation extensions, form the most important model class for multivariate asset returns. For multivariate density and portfolio risk forecasting, a drawback of these models is the underlying assumption of Gaussianity. This paper considers the so-called COMFORT model class, which is the CCC-GARCH model but endowed with multivariate generalized hyperbolic innovations. The novelty of the model is that parameter estimation is conducted by joint maximum likelihood, of all model parameters, using an EM algorithm, and so is feasible for hundreds of assets. This paper demonstrates that (i) the new model is blatantly superior to its Gaussian counterpart in terms of forecasting ability, and (ii) also outperforms ad-hoc three step procedures common in the literature to augment the CCC and DCC models with a fat-tailed distribution. An extensive empirical study confirms the COMFORT model’s superiority in terms of multivariate density and Value-at-Risk forecasting.

Suggested Citation

  • Marc S. Paolella & Pawel Polak, 2022. "Density and Risk Prediction with Non-Gaussian COMFORT Models," Swiss Finance Institute Research Paper Series 22-88, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp2288
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4280472
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    GJR-GARCH; Multivariate Generalized Hyperbolic Distribution; Non-Ellipticity; Value-at-Risk.;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp2288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.