IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1729.html
   My bibliography  Save this paper

Dynamic Mean-Variance Optimisation Problems with Deterministic Information

Author

Listed:
  • Martin Schweizer

    (ETH Zurich and Swiss Finance Institute)

  • Danijel Zivoi

    (ETH Zürich)

  • Mario Sikic

    (University of Zurich)

Abstract

We solve the problems of mean-variance hedging (MVH) and mean-variance portfolio selection (MVPS) under restricted information. We work in a setting where the underlying price process S is a semimartingale, but not adapted to the filtration G which models the information available for constructing trading strategies. We choose as G = Fdet the zero-information filtration and assume that S is a time-dependent affine transformation of a square-integrable martingale. This class of processes includes in particular arithmetic and exponential Lévy models with suitable integrability. We give explicit solutions to the MVH and MVPS problems in this setting, and we show for the Lévy case how they can be expressed in terms of the Lévy triplet.

Suggested Citation

  • Martin Schweizer & Danijel Zivoi & Mario Sikic, 2017. "Dynamic Mean-Variance Optimisation Problems with Deterministic Information," Swiss Finance Institute Research Paper Series 17-29, Swiss Finance Institute, revised Feb 2018.
  • Handle: RePEc:chf:rpseri:rp1729
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3051199
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Bank & Yan Dolinsky, 2020. "A Note on Utility Indifference Pricing with Delayed Information," Papers 2011.05023, arXiv.org, revised Mar 2021.
    2. Roman V. Ivanov, 2023. "The Semi-Hyperbolic Distribution and Its Applications," Stats, MDPI, vol. 6(4), pages 1-21, October.

    More about this item

    Keywords

    Mean-Variance Hedging; Mean-Variance Portfolio Selection; Restricted Information; Partial Information; Deterministic Strategies; Quadratic Optimisation Problems; Nancial Markets; Type (A) Semimartingales;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.