IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp0845.html
   My bibliography  Save this paper

Assessing multivariate predictors of financial market movements: A latent factor framework for ordinal data

Author

Listed:
  • Philippe HUBER

    (University of Geneva)

  • Olivier SCAILLET

    (University of Geneva, HEC and Swiss Finance Institute)

  • Maria-Pia VICTORIA-FESER

    (University of Geneva)

Abstract

Much of the trading activity in Equity markets is directed to brokerage houses. In exchange they provide so-called “soft dollars” which basically are amounts spent in “research” for identifying profitable trading opportunities. Soft dollars represent about USD 1 out of every USD 10 paid in commissions. Obviously they are costly, and it is interesting for an institutional investor to determine whether soft dollar inputs are worth being used (and indirectly paid for) or not, from a statistical point of view. To address this question, we develop association measures between what broker-dealers predict and what markets realize. Our data are ordinal predictions by two broker-dealers and realized values on several markets, on the same ordinal scale. We develop a structural equation model with latent variables in an ordinal setting which allows us to test broker-dealer predictive ability of financial market movements. We use a multivariate logit model in a latent factor framework, develop a tractable estimator based on a Laplace approximation, and show its consistency and asymptotic normality. Monte Carlo experiments reveal that both the estimation method and the testing procedure perform well in small samples. The method is then used to analyze our dataset.

Suggested Citation

  • Philippe HUBER & Olivier SCAILLET & Maria-Pia VICTORIA-FESER, "undated". "Assessing multivariate predictors of financial market movements: A latent factor framework for ordinal data," Swiss Finance Institute Research Paper Series 08-45, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp0845
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=1314759
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.

    More about this item

    Keywords

    latent variable; generalized linear model; factor analysis; multinomial logit; forecasts; LAMLE; Laplace approximation.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp0845. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marilyn Barja). General contact details of provider: http://edirc.repec.org/data/chfeech.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.