IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Minimum Weighted Residual Methods in Endogeneous Growth Models

Listed author(s):
  • Michal Kejak

The paper deals with the application of Minimum Weighted Residual Methods (MWR) in intertemporal optimizing models of endogenous economic growth. In the 1st part of the paper the basics of the MWR method are described. Attention is mainly concentrated on one special class of MWR methods: the orthogonal collocation method with the Chebyshev polynomial basis. The second part of the paper is devoted to the setup of a model of endogenous growth with human capital accumulation and the government sector and to the derivation of 1st order conditions which form a Two-Point-Boundary-Value problem. A transformation of the problem which eliminates the growth in variables is then presented and the MWR method is used to solve the model for some policy experiments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by The Center for Economic Research and Graduate Education - Economics Institute, Prague in its series CERGE-EI Working Papers with number wp155.

in new window

Date of creation: May 2000
Handle: RePEc:cer:papers:wp155
Contact details of provider: Postal:
P.O. Box 882, Politickych veznu 7, 111 21 Praha 1

Phone: (+420) 224 005 123
Fax: (+420) 224 005 333
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cer:papers:wp155. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jana Koudelkova)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.