IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/116.html

Gender Wage Gaps Reconsidered: A Structural Approach Using Matched Employer-Employee Data

Author

Listed:
  • Cristian Bartolucci

Abstract

In this paper I propose and estimate an equilibrium search model using matched employer-employee data to study the extent to which wage differentials between men and women can be explained by differences in productivity, disparities in friction patterns, segregation or wage discrimination. The availability of matched employer-employee data is essential to empirically disentangle differences in workers productivity across groups from differences in wage policies toward those groups. The model features rent splitting, on-the-job search and two-sided heterogeneity in productivity. It is estimated using German microdata. I find that female workers are less productive and more mobile than males. Female workers have on average slightly lower bargaining power than their male counterparts. The total gender wage gap is 42 percent. It turns out that most of the gap, 65 percent, is accounted for by differences in productivity, 17 percent of this gap is driven by segregation while differences in destruction rates explain 9 percent of the total wage-gap. Netting out differences in offer-arrival rates would increase the gap by 13 percent. Due to differences in wage setting, female workers receive wages 9 percent lower than male ones.

Suggested Citation

  • Cristian Bartolucci, 2009. "Gender Wage Gaps Reconsidered: A Structural Approach Using Matched Employer-Employee Data," Carlo Alberto Notebooks 116, Collegio Carlo Alberto, revised 2010.
  • Handle: RePEc:cca:wpaper:116
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.116.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • J70 - Labor and Demographic Economics - - Labor Discrimination - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.