IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/116.html
   My bibliography  Save this paper

Gender Wage Gaps Reconsidered: A Structural Approach Using Matched Employer-Employee Data

Author

Listed:
  • Cristian Bartolucci

Abstract

In this paper I propose and estimate an equilibrium search model using matched employer-employee data to study the extent to which wage differentials between men and women can be explained by differences in productivity, disparities in friction patterns, segregation or wage discrimination. The availability of matched employer-employee data is essential to empirically disentangle differences in workers productivity across groups from differences in wage policies toward those groups. The model features rent splitting, on-the-job search and two-sided heterogeneity in productivity. It is estimated using German microdata. I find that female workers are less productive and more mobile than males. Female workers have on average slightly lower bargaining power than their male counterparts. The total gender wage gap is 42 percent. It turns out that most of the gap, 65 percent, is accounted for by differences in productivity, 17 percent of this gap is driven by segregation while differences in destruction rates explain 9 percent of the total wage-gap. Netting out differences in offer-arrival rates would increase the gap by 13 percent. Due to differences in wage setting, female workers receive wages 9 percent lower than male ones.

Suggested Citation

  • Cristian Bartolucci, 2009. "Gender Wage Gaps Reconsidered: A Structural Approach Using Matched Employer-Employee Data," Carlo Alberto Notebooks 116, Collegio Carlo Alberto, revised 2010.
  • Handle: RePEc:cca:wpaper:116
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.116.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Antonczyk, Dirk & Fitzenberger, Bernd & Sommerfeld, Katrin, 2010. "Rising wage inequality, the decline of collective bargaining, and the gender wage gap," Labour Economics, Elsevier, vol. 17(5), pages 835-847, October.
    2. Kimberly Bayard & Judith Hellerstein & David Neumark & Kenneth Troske, 2003. "New Evidence on Sex Segregation and Sex Differences in Wages from Matched Employee-Employer Data," Journal of Labor Economics, University of Chicago Press, vol. 21(4), pages 887-922, October.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Cristian Bartolucci & Francesco Devicienti, 2012. "Better Workers Move to Better Firms: A Simple Test to Identify Sorting," Carlo Alberto Notebooks 259, Collegio Carlo Alberto.
    5. Alp E. Atakan, 2006. "Assortative Matching with Explicit Search Costs," Econometrica, Econometric Society, vol. 74(3), pages 667-680, May.
    6. Becker, Gary S, 1973. "A Theory of Marriage: Part I," Journal of Political Economy, University of Chicago Press, vol. 81(4), pages 813-846, July-Aug..
    7. Alda, Holger & Bender, Stefan & Gartner, Hermann, 2005. "The linked employer-employee dataset of the IAB (LIAB)," IAB-Discussion Paper 200506, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Paolo Merlino & Pierpaolo Parrotta & Dario Pozzoli, 2018. "Gender Differences in Sorting," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 57(4), pages 671-709, October.
    2. Luca Paolo Merlino & Pierpaolo Parrotta & Dario Pozzoli, 2012. "Assortative Matching Gender," Working Papers ECARES ECARES 2012-040, ULB -- Universite Libre de Bruxelles.
    3. Lochner, Benjamin & Schulz, Bastian, 2020. "Firm productivity, wages, and sorting," IAB-Discussion Paper 202004, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    4. Cristian Bartolucci & Ignacio Monzon, 2014. "Frictions Lead to Sorting: a Partnership Model with On-the-Match Search," Carlo Alberto Notebooks 385, Collegio Carlo Alberto.
    5. Leland D. Crane, 2014. "Firm Dynamics and Assortative Matching," Working Papers 14-25, Center for Economic Studies, U.S. Census Bureau.
    6. Cristian Bartolucci & Francesco Devicienti, 2012. "Better Workers Move to Better Firms: A Simple Test to Identify Sorting," Carlo Alberto Notebooks 259, Collegio Carlo Alberto.
    7. Kampelmann, Stephan & Rycx, François, 2012. "The impact of educational mismatch on firm productivity: Evidence from linked panel data," Economics of Education Review, Elsevier, vol. 31(6), pages 918-931.
    8. Iga Magda & Ewa Cukrowska-Torzewska, 2019. "Gender wage gap in the workplace: Does the age of the firm matter?," IBS Working Papers 01/2019, Instytut Badan Strukturalnych.
    9. John M. Abowd & Francis Kramarz & Sébastien Pérez-Duarte & Ian M. Schmutte, 2018. "Sorting Between and Within Industries: A Testable Model of Assortative Matching," Annals of Economics and Statistics, GENES, issue 129, pages 1-32.
    10. Jeremy Lise & Costas Meghir & Jean-Marc Robin, 2016. "Matching, Sorting and Wages," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 19, pages 63-87, January.
    11. Jeremy Lise & Costas Meghir & Jean-Marc Robin, 2013. "Mismatch, Sorting and Wages Dynamics," Working Papers hal-03473908, HAL.
    12. Astrid Kunze, 2008. "Gender wage gap studies: consistency and decomposition," Empirical Economics, Springer, vol. 35(1), pages 63-76, August.
    13. Jianfei Cao & Xiaoxia Shi & Matthew Shum, 2019. "On the empirical content of the Beckerian marriage model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(2), pages 349-362, March.
    14. Bombardini, Matilde & Orefice, Gianluca & Tito, Maria D., 2019. "Does exporting improve matching? Evidence from French employer-employee data," Journal of International Economics, Elsevier, vol. 117(C), pages 229-241.
    15. Friedrich Poeschel, 2008. "Assortative matching through signals," Working Papers halshs-00585986, HAL.
    16. Böheim, René & Himpele, Klemens & Mahringer, Helmut & Zulehner, Christine, 2013. "The distribution of the gender wage gap in Austria : evidence from matched employer-employee data and tax records," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 46(1), pages 19-34.
    17. Rycx, Francois & Saks, Yves & Tojerow, Ilan, 2016. "Misalignment of Productivity and Wages across Regions? Evidence from Belgian Matched Panel Data," IZA Discussion Papers 10336, Institute of Labor Economics (IZA).
    18. Bastien Drut & Richard Duhautois, 2017. "Assortative Matching Using Soccer Data," Journal of Sports Economics, , vol. 18(5), pages 431-447, June.
    19. Poeschel, Friedrich, 2012. "Assortative matching through signals," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62061, Verein für Socialpolitik / German Economic Association.
    20. Pieter A. Gautier & Coen N. Teulings, 2015. "Sorting And The Output Loss Due To Search Frictions," Journal of the European Economic Association, European Economic Association, vol. 13(6), pages 1136-1166, December.

    More about this item

    Keywords

    labor market discrimination; search frictions; structural estimation; matched employer-employee data;
    All these keywords.

    JEL classification:

    • J70 - Labor and Demographic Economics - - Labor Discrimination - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.