Regime switching models for directional and linear observations
Author
Abstract
Suggested Citation
Note: ach34, dp470
Download full text from publisher
References listed on IDEAS
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024, January.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017.
"Volatility Modeling with a Generalized t Distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
- Andrew Harvey & Rutger-Jan Lange, 2015. "Volatility Modeling with a Generalized t-distribution," Cambridge Working Papers in Economics 1517, Faculty of Economics, University of Cambridge.
- Francesco Lagona & Marco Picone & Antonello Maruotti, 2015. "A hidden Markov model for the analysis of cylindrical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 26(8), pages 534-544, December.
- Lobato, Ignacio & Nankervis, John C & Savin, N E, 2001. "Testing for Autocorrelation Using a Modified Box-Pierce Q Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 187-205, February.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017.
"Time-Varying Transition Probabilities for Markov Regime Switching Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Time Varying Transition Probabilities for Markov Regime Switching Models," Tinbergen Institute Discussion Papers 14-072/III, Tinbergen Institute.
- Jones, M.C. & Pewsey, Arthur, 2005. "A Family of Symmetric Distributions on the Circle," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1422-1428, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Harvey, A., 2021. "Score-driven time series models," Cambridge Working Papers in Economics 2133, Faculty of Economics, University of Cambridge.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harvey, A., 2021. "Score-driven time series models," Cambridge Working Papers in Economics 2133, Faculty of Economics, University of Cambridge.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2025.
"Dynamic Mixture Vector Autoregressions With Score‐Driven Weights,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(4), pages 455-470, June.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2022. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," Research Papers in Economics 2022-02, University of Trier, Department of Economics.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2023. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," CESifo Working Paper Series 10366, CESifo.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2022. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," Working Paper Series 2022-02, University of Trier, Research Group Quantitative Finance and Risk Analysis.
- Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
- Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
- Andrew Harvey & Dario Palumbo, 2023. "Regime switching models for circular and linear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 374-392, July.
- Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2022.
"Implicit score-driven filters for time-varying parameter models,"
Tinbergen Institute Discussion Papers
22-066/III, Tinbergen Institute, revised 21 Nov 2024.
- Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2025. "Implicit score-driven filters for time-varying parameter models," Papers 2512.02744, arXiv.org, revised Dec 2025.
- Kazeem Abimbola Sanusi & Zandri Dickason-Koekemoer, 2022. "Cryptocurrency Returns, Cybercrime and Stock Market Volatility: GAS and Regime Switching Approaches," International Journal of Economics and Financial Issues, Econjournals, vol. 12(6), pages 52-64, November.
- Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017.
"Time-Varying Transition Probabilities for Markov Regime Switching Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Time Varying Transition Probabilities for Markov Regime Switching Models," Tinbergen Institute Discussion Papers 14-072/III, Tinbergen Institute.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Andrew Harvey & Ryoko Ito, 2017. "Modeling time series with zero observations," Economics Papers 2017-W01, Economics Group, Nuffield College, University of Oxford.
- Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
- Palumbo, D., 2021. "Testing and Modelling Time Series with Time Varying Tails," Cambridge Working Papers in Economics 2111, Faculty of Economics, University of Cambridge.
- Ayala, Astrid & Blazsek, Szabolcs & Escribano, Álvaro, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
- Harvey, Andrew & Palumbo, Dario, 2023.
"Score-driven models for realized volatility,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Harvey, A. & Palumbo, D., 2019. "Score-Driven Models for Realized Volatility," Cambridge Working Papers in Economics 1950, Faculty of Economics, University of Cambridge.
More about this item
Keywords
; ; ; ; ; ;JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-03-22 (Econometrics)
- NEP-ETS-2021-03-22 (Econometric Time Series)
- NEP-ORE-2021-03-22 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/cam/camdae/2123.html