IDEAS home Printed from
   My bibliography  Save this paper

Predicting Romanian Financial Distressed Companies


  • Madalina Andreica


The study consisted in collecting financial information for a group of distressed and non-distressed Romanian listed companies during the period 2006–2008, in order to create early warning signals for financial distressed companies using the following methodologies: the Logistic and the Hazard model, the CHAID decision tree model and the Artificial Neural Network model (ANN). For each company a set of 14 financial ratios, that reflect the company’s profitability, solvency, asset utilization, growth ability and size, were calculated and then used in the study. A Principal Component Analysis was also used to reduce the dimensionality of the data space and to allow seeing that the 2 types of companies do form 2 distinct groups suggesting that the ratios used are useful enough to predict financial distress. The following 4 data sets were separately analyzed: first-year data to predict distress one year ahead, second-year data for a 2 year-ahead prediction, third-year data for a 3 year-ahead prediction, as well as cumulative three-year data to predict distress 1 year ahead by letting the ratios vary in time. For each data set, several prediction models were created using CHAID, the Logit and Hazard models as well as the ANN and the hybrid-ANN. The results are consistent with the theory and also to previous studies and the out-of-sample forecast accuracy of the estimated models of 73%-100% indicates that the proposed early warning models for the Romanian listed companies are quite efficient.

Suggested Citation

  • Madalina Andreica, 2009. "Predicting Romanian Financial Distressed Companies," Advances in Economic and Financial Research - DOFIN Working Paper Series 37, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
  • Handle: RePEc:cab:wpaefr:37

    Download full text from publisher

    File URL:
    File Function: First version, 2009
    Download Restriction: no

    References listed on IDEAS

    1. D. COLANDER & al., 2010. "The Financial Crisis and the Systemic Failure of Academic Economics," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
    2. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 0075, European Central Bank.
    3. Michel Dacorogna & Peter Blum, 2003. "Extreme Moves in Foreign Exchange Rates and Risk Limit Setting," Risk and Insurance 0306004, EconWPA.
    4. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 39-69.
    5. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    6. Cotter, John & Dowd, Kevin, 2007. "The tail risks of FX return distributions: A comparison of the returns associated with limit orders and market orders," Finance Research Letters, Elsevier, vol. 4(3), pages 146-154, September.
    7. Brooks, C. & Clare, A.D. & Dalle Molle, J.W. & Persand, G., 2005. "A comparison of extreme value theory approaches for determining value at risk," Journal of Empirical Finance, Elsevier, vol. 12(2), pages 339-352, March.
    8. John Cotter, 2005. "Tail behaviour of the euro," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 827-840.
    9. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    10. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    11. Jesus Gonzalo, 2004. "Which Extreme Values Are Really Extreme?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 349-369.
    12. Guy Kaplanski & Haim Levy, 2015. "Value-at-risk capital requirement regulation, risk taking and asset allocation: a mean-variance analysis," The European Journal of Finance, Taylor & Francis Journals, vol. 21(3), pages 215-241, February.
    13. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 27(01), pages 117-137, May.
    14. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    15. Hols, Martien C A B & de Vries, Casper G, 1991. "The Limiting Distribution of Extremal Exchange Rate Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(3), pages 287-302, July-Sept.
    Full references (including those not matched with items on IDEAS)

    More about this item


    early warning signals; CHAID; ANN;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cab:wpaefr:37. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ciprian Necula). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.