IDEAS home Printed from https://ideas.repec.org/p/cab/wpaefr/37.html
   My bibliography  Save this paper

Predicting Romanian Financial Distressed Companies

Author

Listed:
  • Madalina Andreica

Abstract

The study consisted in collecting financial information for a group of distressed and non-distressed Romanian listed companies during the period 2006–2008, in order to create early warning signals for financial distressed companies using the following methodologies: the Logistic and the Hazard model, the CHAID decision tree model and the Artificial Neural Network model (ANN). For each company a set of 14 financial ratios, that reflect the company’s profitability, solvency, asset utilization, growth ability and size, were calculated and then used in the study. A Principal Component Analysis was also used to reduce the dimensionality of the data space and to allow seeing that the 2 types of companies do form 2 distinct groups suggesting that the ratios used are useful enough to predict financial distress. The following 4 data sets were separately analyzed: first-year data to predict distress one year ahead, second-year data for a 2 year-ahead prediction, third-year data for a 3 year-ahead prediction, as well as cumulative three-year data to predict distress 1 year ahead by letting the ratios vary in time. For each data set, several prediction models were created using CHAID, the Logit and Hazard models as well as the ANN and the hybrid-ANN. The results are consistent with the theory and also to previous studies and the out-of-sample forecast accuracy of the estimated models of 73%-100% indicates that the proposed early warning models for the Romanian listed companies are quite efficient.

Suggested Citation

  • Madalina Andreica, 2009. "Predicting Romanian Financial Distressed Companies," Advances in Economic and Financial Research - DOFIN Working Paper Series 37, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
  • Handle: RePEc:cab:wpaefr:37
    as

    Download full text from publisher

    File URL: http://www.dofin.ase.ro/Working%20papers/Andreica%20Madalina/andreica.madalina.dissertation.pdf
    File Function: First version, 2009
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marin ANDREICA & Madalina Ecaterina POPESCU & Dragos MICU & Eugen ALBU, 2016. "Adaptive Management Procedural Model For Support Of Economic Organizations," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(1), pages 295-301, November.
    2. Mohammed Issah & Samuel Antwi, 2017. "Role of macroeconomic variables on firms’ performance: Evidence from the UK," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1405581-140, January.

    More about this item

    Keywords

    early warning signals; CHAID; ANN;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cab:wpaefr:37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ciprian Necula (email available below). General contact details of provider: https://edirc.repec.org/data/caasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.