IDEAS home Printed from https://ideas.repec.org/p/bot/quadip/wpaper129.html
   My bibliography  Save this paper

Sieve-based inference for infinite-variance linear processes

Author

Listed:
  • Giuseppe Cavaliere

    () (Università di Bologna)

  • Iliyan Georgiev

    () (Universidade Nova de Lisboa)

  • A.M. Robert Taylor

    () (University of Essex)

Abstract

We extend the available asymptotic theory for autoregressive sieve estimators to cover the case of stationary and invertible linear processes driven by independent identically distributed (i.i.d.) infinite variance (IV) innovations. We show that the ordinary least squares sieve estimates, together with estimates of the impulse responses derived from these, obtained from an autoregression whose order is an increasing function of the sample size, are consistent and exhibit asymptotic properties analogous to those which obtain for a finite-order autoregressive process driven by i.i.d. IV errors. As these limit distributions cannot be directly employed for inference because they either may not exist or, where they do, depend on unknown parameters, a second contribution of the paper is to investigate the usefulness of bootstrap methods in this setting. Focusing on three sieve bootstraps: the wild and permutation bootstraps, and a hybrid of the two, we show that, in contrast to the case of finite variance innovations, the wild bootstrap requires an infeasible correction to be consistent, whereas the other two bootstrap schemes are shown to be consistent (the hybrid for symmetrically distributed innovations) under general conditions.

Suggested Citation

  • Giuseppe Cavaliere & Iliyan Georgiev & A.M. Robert Taylor, 2015. "Sieve-based inference for infinite-variance linear processes," Quaderni di Dipartimento 4, Department of Statistics, University of Bologna.
  • Handle: RePEc:bot:quadip:wpaper:129
    as

    Download full text from publisher

    File URL: http://amsacta.unibo.it/4404
    Download Restriction: no

    More about this item

    Keywords

    Bootstrap; Sieve autoregression; Infinite variance; Time Series;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:quadip:wpaper:129. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michela Mengoli). General contact details of provider: http://edirc.repec.org/data/dsbolit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.