IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimating and modeling the proportion cured of disease in population-based cancer studies

Listed author(s):
  • Paul C. Lambert


    (Centre for Biostatistics & Genetic Epidemiology, University of Leicester)

Registered author(s):

    In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction (the proportion of patients cured of disease) is of interest to patients and a useful measure to monitor trends in survival of curable disease. I will describe two types of cure model, namely, the mixture and nonmixture cure model (Sposto 2002); explain how they can be extended to incorporate the expected mortality rate (obtained from routine data sources); and discuss their implementation in Stata using the strsmix and strsnmix commands. In both commands there is the choice of parametric distribution (Weibull, generalized gamma, and log–logistic) and link function for the cure fraction (identity, logit, and log(–log)). As well as modeling the cure fraction it is possible to include covariates for the ancillary parameters for the parametric distributions. This ability is important, as it allows for departures from proportional excess hazards (typical in many population-based cancer studies). Both commands incorporate delayed entry and can therefore be used to obtain up-to-date estimates of the cure fraction by using period analysis (Smith et al. 2004). There is also an associated predict command that allows prediction of the cure fraction, relative survival, and the excess mortality rate with associated confidence intervals. For some cancers the parametric distributions listed above do not fit the data well, and I will describe how finite mixture distributions can be used to overcome this limitation. I will use examples from international cancer registries to illustrate the approach.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: presentation slides
    Download Restriction: no

    Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2006 with number 12.

    in new window

    Date of creation: 18 Sep 2006
    Handle: RePEc:boc:usug06:12
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:boc:usug06:12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.