IDEAS home Printed from
   My bibliography  Save this paper

A Bayesian Method of Forecast Averaging for Models Known Only by Their Historic Outputs: An Application to the BCRA´s REM


  • Pedro Elosegui

    (Central Bank of Argentina)

  • Francisco Lepone

    (Central Bank of Argentina)

  • George McCandless

    () (Central Bank of Argentina)


Similar to other Central Banks, the BCRA publishes monthly a REM that summaries the forecasts and projections of a group of economic analysts and consultants who volunteer to participate in the program. The BCRA publishes only the median, and the standard deviation of the sample received. The logic for using these statistics is that all participants are to be treated equally. Under the assumption that some forecasters have better underlying models than others, one might be able to improve the accuracy of the aggregate forecast by giving greater priority to those who have historically predicted better. The BCRA does not have access to the models used to make the predictions, only the forecasts are provided. An averaging method that puts higher weights on the predictions of those forecasters who have done best in the past should be able to produce a better aggregate forecast. The problem is how to determine these weights. In this paper, we develop a Bayesian averaging method that can do that well. The aggregate forecasts that come from our Bayesian averaging provides statistically better forecasts than the mean, median, best model, five best models and other methods traditionally used. In particular, the method developed in this paper is much better at detecting changes in the trends of the variables. The aggregate predictions published from the REM provide information that is useful, not only for monetary and economic policy decisions, but also for the consumption and business decisions of private economic agents. Improving these forecasts are of benefit to all members of the economy.

Suggested Citation

  • Pedro Elosegui & Francisco Lepone & George McCandless, 2006. "A Bayesian Method of Forecast Averaging for Models Known Only by Their Historic Outputs: An Application to the BCRA´s REM," BCRA Working Paper Series 200607, Central Bank of Argentina, Economic Research Department.
  • Handle: RePEc:bcr:wpaper:200607

    Download full text from publisher

    File URL:
    File Function: English version
    Download Restriction: no

    File URL:
    File Function: versión en Español
    Download Restriction: no

    References listed on IDEAS

    1. Narasimhan Jegadeesh & George Pennacchi, 1996. "The behavior of interest rates implied by the term structure of Eurodollar future," Proceedings, Federal Reserve Bank of Cleveland, issue Aug, pages 426-451.
    2. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    5. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(03), pages 301-329, September.
    6. Sujoy Mukerji & Jean-Marc Tallon, 2004. "Ambiguity aversion and the absence of indexed debt," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 24(3), pages 665-685, October.
    7. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    8. Pu Shen, 1998. "Features and risks of Treasury Inflation Protection Securities," Economic Review, Federal Reserve Bank of Kansas City, issue Q I, pages 23-38.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    10. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    13. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    14. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    15. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, February.
    16. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 85-107, March.
    17. Ball, Clifford A. & Torous, Walter N., 1995. "Regime Shifts in Short Term Riskless Interest Rates," University of California at Los Angeles, Anderson Graduate School of Management qt5hs021jf, Anderson Graduate School of Management, UCLA.
    18. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, vol. 74(1), pages 149-176, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Argentina; Bayesian averaging; expectations surveys; forecasting;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcr:wpaper:200607. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Federico Grillo). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.