IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2602.01066.html

Simple and Robust Quality Disclosure: The Power of Quantile Partition

Author

Listed:
  • Shipra Agrawal
  • Yiding Feng
  • Wei Tang

Abstract

Quality information on online platforms is often conveyed through simple, percentile-based badges and tiers that remain stable across different market environments. Motivated by this empirical evidence, we study robust quality disclosure in a market where a platform commits to a public disclosure policy mapping the seller's product quality into a signal, and the seller subsequently sets a downstream monopoly price. Buyers have heterogeneous private types and valuations that are linear in quality. We evaluate a disclosure policy via a minimax competitive ratio: its worst-case revenue relative to the Bayesian-optimal disclosure-and-pricing benchmark, uniformly over all prior quality distributions, type distributions, and admissible valuations. Our main results provide a sharp theoretical justification for quantile-partition disclosure. For K-quantile partition policies, we fully characterize the robust optimum: the optimal worst-case ratio is pinned down by a one-dimensional fixed-point equation and the optimal thresholds follow a backward recursion. We also give an explicit formula for the robust ratio of any quantile partition as a simple "max-over-bins" expression, which explains why the robust-optimal partition allocates finer resolution to upper quantiles and yields tight guarantees such as 1 + 1/K for uniform percentile buckets. In contrast, we show a robustness limit for finite-signal monotone (quality-threshold) partitions, which cannot beat a factor-2 approximation. Technically, our analysis reduces the robust quality disclosure to a robust disclosure design program by establishing a tight functional characterization of all feasible indirect revenue functions.

Suggested Citation

  • Shipra Agrawal & Yiding Feng & Wei Tang, 2026. "Simple and Robust Quality Disclosure: The Power of Quantile Partition," Papers 2602.01066, arXiv.org.
  • Handle: RePEc:arx:papers:2602.01066
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2602.01066
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2602.01066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.