IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.07013.html

Learning Paths to Multi-Sector Equilibrium: Belief Dynamics Under Uncertain Returns to Scale

Author

Listed:
  • Stefano Nasini
  • Rabia Nessah
  • Bertrand Wigniolle

Abstract

This paper explores the dynamics of learning in a multi-sector general equilibrium model where firms operate under incomplete information about their production returns to scale. Firms iteratively update their beliefs using maximum a-posteriori estimation, derived from observed production outcomes, to refine their knowledge of their returns to scale. The implications of these learning dynamics for market equilibrium and the conditions under which firms can effectively learn their true returns to scale are the key objects of this study. Our results shed light on how idiosyncratic shocks influence the learning process and demonstrate that input decisions encode all pertinent information for belief updates. Additionally, we show that a long-memory (path-dependent) learning which keeps track of all past estimations ends up having a worse performance than a short-memory (path-independent) approach.

Suggested Citation

  • Stefano Nasini & Rabia Nessah & Bertrand Wigniolle, 2025. "Learning Paths to Multi-Sector Equilibrium: Belief Dynamics Under Uncertain Returns to Scale," Papers 2512.07013, arXiv.org.
  • Handle: RePEc:arx:papers:2512.07013
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.07013
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.07013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.