IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.02660.html
   My bibliography  Save this paper

Spectral analysis of high-dimensional spot volatility matrix with applications

Author

Listed:
  • Qiang Liu
  • Yiming Liu
  • Zhi Liu
  • Wang Zhou

Abstract

In random matrix theory, the spectral distribution of the covariance matrix has been well studied under the large dimensional asymptotic regime when the dimensionality and the sample size tend to infinity at the same rate. However, most existing theories are built upon the assumption of independent and identically distributed samples, which may be violated in practice. For example, the observational data of continuous-time processes at discrete time points, namely, the high-frequency data. In this paper, we extend the classical spectral analysis for the covariance matrix in large dimensional random matrix to the spot volatility matrix by using the high-frequency data. We establish the first-order limiting spectral distribution and obtain a second-order result, that is, the central limit theorem for linear spectral statistics. Moreover, we apply the results to design some feasible tests for the spot volatility matrix, including the identity and sphericity tests. Simulation studies justify the finite sample performance of the test statistics and verify our established theory.

Suggested Citation

  • Qiang Liu & Yiming Liu & Zhi Liu & Wang Zhou, 2025. "Spectral analysis of high-dimensional spot volatility matrix with applications," Papers 2511.02660, arXiv.org.
  • Handle: RePEc:arx:papers:2511.02660
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.02660
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.02660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.