IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.24128.html
   My bibliography  Save this paper

Extended HJB Equation for Mean-Variance Stopping Problem: Vanishing Regularization Method

Author

Listed:
  • Yuchao Dong
  • Harry Zheng

Abstract

This paper studies the time-inconsistent MV optimal stopping problem via a game-theoretic approach to find equilibrium strategies. To overcome the mathematical intractability of direct equilibrium analysis, we propose a vanishing regularization method: first, we introduce an entropy-based regularization term to the MV objective, modeling mixed-strategy stopping times using the intensity of a Cox process. For this regularized problem, we derive a coupled extended Hamilton-Jacobi-Bellman (HJB) equation system, prove a verification theorem linking its solutions to equilibrium intensities, and establish the existence of classical solutions for small time horizons via a contraction mapping argument. By letting the regularization term tend to zero, we formally recover a system of parabolic variational inequalities that characterizes equilibrium stopping times for the original MV problem. This system includes an additional key quadratic term--a distinction from classical optimal stopping, where stopping conditions depend only on comparing the value function to the instantaneous reward.

Suggested Citation

  • Yuchao Dong & Harry Zheng, 2025. "Extended HJB Equation for Mean-Variance Stopping Problem: Vanishing Regularization Method," Papers 2510.24128, arXiv.org.
  • Handle: RePEc:arx:papers:2510.24128
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.24128
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.24128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.