IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.11389.html
   My bibliography  Save this paper

Enhancing ML Models Interpretability for Credit Scoring

Author

Listed:
  • Sagi Schwartz
  • Qinling Wang
  • Fang Fang

Abstract

Predicting default is essential for banks to ensure profitability and financial stability. While modern machine learning methods often outperform traditional regression techniques, their lack of transparency limits their use in regulated environments. Explainable artificial intelligence (XAI) has emerged as a solution in domains like credit scoring. However, most XAI research focuses on post-hoc interpretation of black-box models, which does not produce models lightweight or transparent enough to meet regulatory requirements, such as those for Internal Ratings-Based (IRB) models. This paper proposes a hybrid approach: post-hoc interpretations of black-box models guide feature selection, followed by training glass-box models that maintain both predictive power and transparency. Using the Lending Club dataset, we demonstrate that this approach achieves performance comparable to a benchmark black-box model while using only 10 features - an 88.5% reduction. In our example, SHapley Additive exPlanations (SHAP) is used for feature selection, eXtreme Gradient Boosting (XGBoost) serves as the benchmark and the base black-box model, and Explainable Boosting Machine (EBM) and Penalized Logistic Tree Regression (PLTR) are the investigated glass-box models. We also show that model refinement using feature interaction analysis, correlation checks, and expert input can further enhance model interpretability and robustness.

Suggested Citation

  • Sagi Schwartz & Qinling Wang & Fang Fang, 2025. "Enhancing ML Models Interpretability for Credit Scoring," Papers 2509.11389, arXiv.org.
  • Handle: RePEc:arx:papers:2509.11389
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.11389
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.11389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.