IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.05820.html
   My bibliography  Save this paper

Volatility Modeling via EWMA-Driven Time-Dependent Hurst Parameters

Author

Listed:
  • Jayanth Athipatla

Abstract

We introduce a novel rough Bergomi (rBergomi) model featuring a variance-driven exponentially weighted moving average (EWMA) time-dependent Hurst parameter $H_t$, fundamentally distinct from recent machine learning and wavelet-based approaches in the literature. Our framework pioneers a unified rough differential equation (RDE) formulation grounded in rough path theory, where the Hurst parameter dynamically adapts to evolving volatility regimes through a continuous EWMA mechanism tied to instantaneous variance. Unlike discrete model-switching or computationally intensive forecasting methods, our approach provides mathematical tractability while capturing volatility clustering and roughness bursts. We rigorously establish existence and uniqueness of solutions via rough path theory and derive martingale properties. Empirical validation on diverse asset classes including equities, cryptocurrencies, and commodities demonstrates superior performance in capturing dynamics and out-of-sample pricing accuracy. Our results show significant improvements over traditional constant-Hurst models.

Suggested Citation

  • Jayanth Athipatla, 2025. "Volatility Modeling via EWMA-Driven Time-Dependent Hurst Parameters," Papers 2509.05820, arXiv.org.
  • Handle: RePEc:arx:papers:2509.05820
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.05820
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.05820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.