Optimal Portfolio Construction -- A Reinforcement Learning Embedded Bayesian Hierarchical Risk Parity (RL-BHRP) Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Feng, Guanhao & He, Jingyu, 2022.
"Factor investing: A Bayesian hierarchical approach,"
Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.
- Guanhao Feng & Jingyu He, 2019. "Factor Investing: A Bayesian Hierarchical Approach," Papers 1902.01015, arXiv.org, revised Sep 2020.
- Adrian Millea & Abbas Edalat, 2022. "Using Deep Reinforcement Learning with Hierarchical Risk Parity for Portfolio Optimization," IJFS, MDPI, vol. 11(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guanhao Feng & Nicholas Polson, 2020. "Regularizing Bayesian predictive regressions," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 591-608, December.
- Cássio Roberto de Andrade Alves & Márcio Laurini, 2023. "Estimating the Capital Asset Pricing Model with Many Instruments: A Bayesian Shrinkage Approach," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2025-09-15 (Computational Economics)
- NEP-FOR-2025-09-15 (Forecasting)
- NEP-RMG-2025-09-15 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.11856. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2508.11856.html