IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.22282.html
   My bibliography  Save this paper

Short-time behavior of the At-The-Money implied volatility for the jump-diffusion stochastic volatility Bachelier model

Author

Listed:
  • Elisa Al`os
  • `Oscar Bur'es
  • Josep Vives

Abstract

In this paper we use Malliavin Calculus techniques in order to obtain expressions for the short-time behavior of the at-the-money implied volatility (ATM-IV) level and skew for a jump-diffusion stock price. The diffusion part is assumed to be the stochastic volatility Bachelier model and the jumps are modeled by a pure-jump L\'evy process with drift so that the stock price is a martingale. Regarding the level, we show that the short-time behavior of the ATM-IV level is the same for all pure-jump L\'evy processes and, regarding the skew, we give conditions on the law of the jumps for the skew to exist. We also give several numerical examples of stochastic volatilities and L\'evy processes that confirm the theoretical results found in the paper.

Suggested Citation

  • Elisa Al`os & `Oscar Bur'es & Josep Vives, 2025. "Short-time behavior of the At-The-Money implied volatility for the jump-diffusion stochastic volatility Bachelier model," Papers 2503.22282, arXiv.org.
  • Handle: RePEc:arx:papers:2503.22282
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.22282
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Philippe Aguilar, 2021. "Explicit option valuation in the exponential NIG model," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1281-1299, August.
    2. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    3. Elisa Alòs & Jorge A. León & Monique Pontier & Josep Vives, 2008. "A Hull and White formula for a general stochastic volatility jump-diffusion model with applications to the study of the short-time behavior of the implied volatility," Economics Working Papers 1081, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    5. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    6. Elisa Alòs & Kenichiro Shiraya, 2019. "Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach," Finance and Stochastics, Springer, vol. 23(2), pages 423-447, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    2. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    3. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    4. repec:hal:wpaper:hal-03827332 is not listed on IDEAS
    5. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2024. "The rough Hawkes Heston stochastic volatility model," Post-Print hal-03827332, HAL.
    6. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    7. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    8. Jan Matas & Jan Pospíšil, 2023. "Robustness and sensitivity analyses of rough Volterra stochastic volatility models," Annals of Finance, Springer, vol. 19(4), pages 523-543, December.
    9. Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.
    10. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    11. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    12. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    13. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    14. Stefano De Marco, 2020. "On the harmonic mean representation of the implied volatility," Papers 2007.03585, arXiv.org.
    15. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    16. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    17. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    18. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    19. Martin Friesen & Stefan Gerhold & Kristof Wiedermann, 2024. "Small-time central limit theorems for stochastic Volterra integral equations and their Markovian lifts," Papers 2412.15971, arXiv.org.
    20. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    21. Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023. "Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.22282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.