IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.18165.html
   My bibliography  Save this paper

Agent-Based Models for Two Stocks with Superhedging

Author

Listed:
  • Dario Crisci
  • Sebastian E. Ferrando
  • Konrad Gajewski

Abstract

An agent-based modelling methodology for the joint price evolution of two stocks is put forward. The method models future multidimensional price trajectories reflecting how a class of agents rebalance their portfolios in an operational way by reacting to how stocks' charts unfold. Prices are expressed in units of a third stock that acts as numeraire. The methodology is robust, in particular, it does not depend on any prior probability or analytical assumptions and it is based on constructing scenarios/trajectories. A main ingredient is a superhedging interpretation that provides relative superhedging prices between the two modelled stocks. The operational nature of the methodology gives objective conditions for the validity of the model and so implies realistic risk-rewards profiles for the agent's operations. Superhedging computations are performed with a dynamic programming algorithm deployed on a graph data structure. Null subsets of the trajectory space are directly related to arbitrage opportunities (i.e. there is no need for probabilistic considerations) that may emerge during the trajectory set construction. It follows that the superhedging algorithm handles null sets in a rigorous and intuitive way. Superhedging and underhedging bounds are kept relevant to the investor by means of a worst case pruning method and, as an alternative, a theory supported pruning that relies on a new notion of small arbitrage.

Suggested Citation

  • Dario Crisci & Sebastian E. Ferrando & Konrad Gajewski, 2025. "Agent-Based Models for Two Stocks with Superhedging," Papers 2503.18165, arXiv.org.
  • Handle: RePEc:arx:papers:2503.18165
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.18165
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    2. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    3. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    4. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    2. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    3. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    4. Christian Bender & Sebastian Ferrando & Alfredo Gonzalez, 2021. "Model-Free Finance and Non-Lattice Integration," Papers 2105.10623, arXiv.org.
    5. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    6. Shuzhen Yang & Wenqing Zhang, 2024. "Asset pricing under model uncertainty with finite time and states," Papers 2408.13048, arXiv.org.
    7. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    8. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    9. Rafa{l} M. {L}ochowski & Nicolas Perkowski & David J. Promel, 2021. "One-dimensional game-theoretic differential equations," Papers 2101.08041, arXiv.org.
    10. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    11. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    12. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    13. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    14. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, December.
    15. Laurence Carassus & Massinissa Ferhoune, 2024. "Nonconcave Robust Utility Maximization under Projective Determinacy," Papers 2403.11824, arXiv.org.
    16. Stephan Eckstein & Gaoyue Guo & Tongseok Lim & Jan Obloj, 2019. "Robust pricing and hedging of options on multiple assets and its numerics," Papers 1909.03870, arXiv.org, revised Oct 2020.
    17. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    18. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    19. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2021. "Duality theory for robust utility maximisation," Finance and Stochastics, Springer, vol. 25(3), pages 469-503, July.
    20. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.18165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.