IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.17830.html
   My bibliography  Save this paper

Certified Decisions

Author

Listed:
  • Isaiah Andrews
  • Jiafeng Chen

Abstract

Hypothesis tests and confidence intervals are ubiquitous in empirical research, yet their connection to subsequent decision-making is often unclear. We develop a theory of certified decisions that pairs recommended decisions with inferential guarantees. Specifically, we attach P-certificates -- upper bounds on loss that hold with probability at least $1-\alpha$ -- to recommended actions. We show that such certificates allow "safe," risk-controlling adoption decisions for ambiguity-averse downstream decision-makers. We further prove that it is without loss to limit attention to P-certificates arising as minimax decisions over confidence sets, or what Manski (2021) terms "as-if decisions with a set estimate." A parallel argument applies to E-certified decisions obtained from e-values in settings with unbounded loss.

Suggested Citation

  • Isaiah Andrews & Jiafeng Chen, 2025. "Certified Decisions," Papers 2502.17830, arXiv.org.
  • Handle: RePEc:arx:papers:2502.17830
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.17830
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    2. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen & Liyang Sun, 2025. "Policy Learning with Confidence," Papers 2502.10653, arXiv.org.
    3. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karun Adusumilli, 2022. "How to sample and when to stop sampling: The generalized Wald problem and minimax policies," Papers 2210.15841, arXiv.org, revised May 2025.
    2. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    3. Will Davis & Alexander Gordan & Rusty Tchernis, 2021. "Measuring the spatial distribution of health rankings in the United States," Health Economics, John Wiley & Sons, Ltd., vol. 30(11), pages 2921-2936, November.
    4. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    5. Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024. "Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
    6. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    7. Sarah Moon, 2025. "Optimal Policy Choices Under Uncertainty," Papers 2503.03910, arXiv.org.
    8. David J. Deming, 2021. "The Growing Importance of Decision-Making on the Job," NBER Working Papers 28733, National Bureau of Economic Research, Inc.
    9. Raffaella Giacomini & Sokbae Lee & Silvia Sarpietro, 2023. "Individual Shrinkage for Random Effects," Papers 2308.01596, arXiv.org, revised May 2025.
    10. Isaiah Andrews & Jonathan Roth & Ariel Pakes, 2023. "Inference for Linear Conditional Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(6), pages 2763-2791.
    11. Jiafeng Chen, 2021. "Nonparametric Treatment Effect Identification in School Choice," Papers 2112.03872, arXiv.org, revised Oct 2023.
    12. Dominic Coey & Kenneth Hung, 2022. "Empirical Bayes Selection for Value Maximization," Papers 2210.03905, arXiv.org, revised May 2025.
    13. Sergei Bazylik & Magne Mogstad & Joseph P. Romano & Azeem Shaikh & Daniel Wilhelm, 2021. "Finite- and Large-Sample Inference for Ranks using Multinomial Data with an Application to Ranking Political Parties," NBER Working Papers 29519, National Bureau of Economic Research, Inc.
    14. Patrick Kline, 2023. "A Comment on: “Invidious Comparisons: Ranking and Selection as Compound Decisions” by Jiaying Gu and Roger Koenker," Econometrica, Econometric Society, vol. 91(1), pages 47-52, January.
    15. Raffaella Giacomini & Sokbae Lee & Silvia Sarpietro, 2023. "A Robust Method for Microforecasting and Estimation of Random Effects," Working Paper Series WP 2023-26, Federal Reserve Bank of Chicago.
    16. Andrews, Isaiah & Kitagawa, Toru & McCloskey, Adam, 2021. "Inference after estimation of breaks," Journal of Econometrics, Elsevier, vol. 224(1), pages 39-59.
    17. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    18. Charles F. Manski, 2023. "Using Limited Trial Evidence to Credibly Choose Treatment Dosage when Efficacy and Adverse Effects Weakly Increase with Dose," NBER Working Papers 31305, National Bureau of Economic Research, Inc.
    19. Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024. "Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
    20. Keisuke Hirano, 2023. "A Comment on: “Invidious Comparisons: Ranking and Selection as Compound Decisions” by Jiaying Gu and Roger Koenker," Econometrica, Econometric Society, vol. 91(1), pages 43-46, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.17830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.