IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.15222.html
   My bibliography  Save this paper

Leveraging Generative Adversarial Networks for Addressing Data Imbalance in Financial Market Supervision

Author

Listed:
  • Mohan Jiang
  • Yaxin Liang
  • Siyuan Han
  • Kunyuan Ma
  • Yuan Chen
  • Zhen Xu

Abstract

This study explores the application of generative adversarial networks in financial market supervision, especially for solving the problem of data imbalance to improve the accuracy of risk prediction. Since financial market data are often imbalanced, especially high-risk events such as market manipulation and systemic risk occur less frequently, traditional models have difficulty effectively identifying these minority events. This study proposes to generate synthetic data with similar characteristics to these minority events through GAN to balance the dataset, thereby improving the prediction performance of the model in financial supervision. Experimental results show that compared with traditional oversampling and undersampling methods, the data generated by GAN has significant advantages in dealing with imbalance problems and improving the prediction accuracy of the model. This method has broad application potential in financial regulatory agencies such as the U.S. Securities and Exchange Commission (SEC), the Financial Industry Regulatory Authority (FINRA), the Federal Deposit Insurance Corporation (FDIC), and the Federal Reserve.

Suggested Citation

  • Mohan Jiang & Yaxin Liang & Siyuan Han & Kunyuan Ma & Yuan Chen & Zhen Xu, 2024. "Leveraging Generative Adversarial Networks for Addressing Data Imbalance in Financial Market Supervision," Papers 2412.15222, arXiv.org.
  • Handle: RePEc:arx:papers:2412.15222
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.15222
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zixue Zhao & Tianxiang Cui & Shusheng Ding & Jiawei Li & Anthony Graham Bellotti, 2024. "Resampling Techniques Study on Class Imbalance Problem in Credit Risk Prediction," Mathematics, MDPI, vol. 12(5), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.15222. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.