IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.05209.html
   My bibliography  Save this paper

On the Martingale Schr\"odinger Bridge between Two Distributions

Author

Listed:
  • Marcel Nutz
  • Johannes Wiesel

Abstract

We study a martingale Schr\"odinger bridge problem: given two probability distributions, find their martingale coupling with minimal relative entropy. Our main result provides Schr\"odinger potentials for this coupling. Namely, under certain conditions, the log-density of the optimal coupling is given by a triplet of real functions representing the marginal and martingale constraints. The potentials are also described as the solution of a dual problem.

Suggested Citation

  • Marcel Nutz & Johannes Wiesel, 2024. "On the Martingale Schr\"odinger Bridge between Two Distributions," Papers 2401.05209, arXiv.org.
  • Handle: RePEc:arx:papers:2401.05209
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.05209
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    2. Beatrice Acciaio & Martin Larsson & Walter Schachermayer, 2017. "The space of outcomes of semi-static trading strategies need not be closed," Finance and Stochastics, Springer, vol. 21(3), pages 741-751, July.
    3. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    4. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2013. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
    5. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    6. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers Main hal-03460952, HAL.
    7. Hadrien de March & Pierre Henry-Labordere, 2019. "Building Arbitrage-Free Implied Volatility: Sinkhorn'S Algorithm And Variants," Working Papers hal-02011533, HAL.
    8. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Limits of semistatic trading strategies," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 185-205, January.
    9. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    10. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
    2. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    3. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Martingale Schr\"odinger Bridges and Optimal Semistatic Portfolios," Papers 2204.12250, arXiv.org.
    4. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Limits of semistatic trading strategies," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 185-205, January.
    5. Joshua Zoen-Git Hiew & Tongseok Lim & Brendan Pass & Marcelo Cruz de Souza, 2023. "Geometry of vectorial martingale optimal transport and robust option pricing," Papers 2309.04947, arXiv.org, revised Sep 2023.
    6. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Limits of Semistatic Trading Strategies," Papers 2204.12251, arXiv.org.
    7. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    8. Tongseok Lim, 2023. "Replication of financial derivatives under extreme market models given marginals," Papers 2307.00807, arXiv.org.
    9. Benjamin Jourdain & Gilles Pagès, 2022. "Convex Order, Quantization and Monotone Approximations of ARCH Models," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2480-2517, December.
    10. Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org.
    11. Wiesel Johannes & Zhang Erica, 2023. "An optimal transport-based characterization of convex order," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-15, January.
    12. Julio Backhoff-Veraguas & Gudmund Pammer, 2019. "Stability of martingale optimal transport and weak optimal transport," Papers 1904.04171, arXiv.org, revised Dec 2020.
    13. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    14. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    15. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    16. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2015. "Model-free Superhedging Duality," Papers 1506.06608, arXiv.org, revised May 2016.
    17. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    18. Lim, Tongseok, 2020. "Optimal martingale transport between radially symmetric marginals in general dimensions," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1897-1912.
    19. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    20. Ibrahim Ekren & H. Mete Soner, 2016. "Constrained Optimal Transport," Papers 1610.02940, arXiv.org, revised Sep 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.05209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.