IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.07029.html
   My bibliography  Save this paper

A discretization scheme for path-dependent FBSDEs and PDEs

Author

Listed:
  • Jiuk Jang
  • Hyungbin Park

Abstract

This study develops a numerical scheme for path-dependent FBSDEs and PDEs. We introduce a Picard iteration method for solving path-dependent FBSDEs, prove its convergence to the true solution, and establish its rate of convergence. A key contribution of our approach is a novel estimator for the martingale integrand in the FBSDE, specifically designed to handle path-dependence more reliably than existing methods. We derive a concentration inequality that quantifies the statistical error of this estimator in a Monte Carlo framework. Based on these results, we investigate a supervised learning method with neural networks for solving path-dependent PDEs. The proposed algorithm is fully implementable and adaptable to a broad class of path-dependent problems.

Suggested Citation

  • Jiuk Jang & Hyungbin Park, 2023. "A discretization scheme for path-dependent FBSDEs and PDEs," Papers 2308.07029, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2308.07029
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.07029
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.07029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.