Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperRESHAPE: Explaining Accounting Anomalies in Financial Statement Audits by enhancing SHapley Additive exPlanations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marco Schreyer & Timur Sattarov & Christian Schulze & Bernd Reimer & Damian Borth, 2019. "Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks," Papers 1908.00734, arXiv.org.
- Giorgio Visani & Enrico Bagli & Federico Chesani & Alessandro Poluzzi & Davide Capuzzo, 2022. "Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 91-101, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei Jie Yeo & Wihan van der Heever & Rui Mao & Erik Cambria & Ranjan Satapathy & Gianmarco Mengaldo, 2023. "A Comprehensive Review on Financial Explainable AI," Papers 2309.11960, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haipeng Liu & Jiangtao Wang & Yayuan Geng & Kunwei Li & Han Wu & Jian Chen & Xiangfei Chai & Shaolin Li & Dingchang Zheng, 2022. "Fine-Grained Assessment of COVID-19 Severity Based on Clinico-Radiological Data Using Machine Learning," IJERPH, MDPI, vol. 19(17), pages 1-14, August.
- Janssens, Bram & Schetgen, Lisa & Bogaert, Matthias & Meire, Matthijs & Van den Poel, Dirk, 2024. "360 Degrees rumor detection: When explanations got some explaining to do," European Journal of Operational Research, Elsevier, vol. 317(2), pages 366-381.
- Ahmad Faisal Hayek & Nora Azima Noordin & Khaled Hussainey, 2022. "Machine Learning and External Auditor Perception: An Analysis for UAE External Auditors Using Technology Acceptance Model," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 21(4), pages 475-500, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ACC-2022-10-17 (Accounting and Auditing)
- NEP-BIG-2022-10-17 (Big Data)
- NEP-CMP-2022-10-17 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.09157. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.