IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.08964.html
   My bibliography  Save this paper

To Detect Irregular Trade Behaviors In Stock Market By Using Graph Based Ranking Methods

Author

Listed:
  • Loc Tran
  • Linh Tran

Abstract

To detect the irregular trade behaviors in the stock market is the important problem in machine learning field. These irregular trade behaviors are obviously illegal. To detect these irregular trade behaviors in the stock market, data scientists normally employ the supervised learning techniques. In this paper, we employ the three graph Laplacian based semi-supervised ranking methods to solve the irregular trade behavior detection problem. Experimental results show that that the un-normalized and symmetric normalized graph Laplacian based semi-supervised ranking methods outperform the random walk Laplacian based semi-supervised ranking method.

Suggested Citation

  • Loc Tran & Linh Tran, 2019. "To Detect Irregular Trade Behaviors In Stock Market By Using Graph Based Ranking Methods," Papers 1909.08964, arXiv.org.
  • Handle: RePEc:arx:papers:1909.08964
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.08964
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.08964. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.