IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.02884.html
   My bibliography  Save this paper

A Statistical Recurrent Stochastic Volatility Model for Stock Markets

Author

Listed:
  • Trong-Nghia Nguyen
  • Minh-Ngoc Tran
  • David Gunawan
  • R. Kohn

Abstract

The Stochastic Volatility (SV) model and its variants are widely used in the financial sector while recurrent neural network (RNN) models are successfully used in many large-scale industrial applications of Deep Learning. Our article combines these two methods in a non-trivial way and proposes a model, which we call the Statistical Recurrent Stochastic Volatility (SR-SV) model, to capture the dynamics of stochastic volatility. The proposed model is able to capture complex volatility effects (e.g., non-linearity and long-memory auto-dependence) overlooked by the conventional SV models, is statistically interpretable and has an impressive out-of-sample forecast performance. These properties are carefully discussed and illustrated through extensive simulation studies and applications to five international stock index datasets: The German stock index DAX30, the Hong Kong stock index HSI50, the France market index CAC40, the US stock market index SP500 and the Canada market index TSX250. An user-friendly software package together with the examples reported in the paper are available at \url{https://github.com/vbayeslab}.

Suggested Citation

  • Trong-Nghia Nguyen & Minh-Ngoc Tran & David Gunawan & R. Kohn, 2019. "A Statistical Recurrent Stochastic Volatility Model for Stock Markets," Papers 1906.02884, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:1906.02884
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.02884
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Buczyński & Marcin Chlebus, 2021. "GARCHNet - Value-at-Risk forecasting with novel approach to GARCH models based on neural networks," Working Papers 2021-08, Faculty of Economic Sciences, University of Warsaw.
    2. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    3. Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
    4. Martin Magris & Alexandros Iosifidis, 2023. "Variational Inference for GARCH-family Models," Papers 2310.03435, arXiv.org.
    5. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    6. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.02884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.