IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.13248.html
   My bibliography  Save this paper

High-order compact finite difference scheme for option pricing in stochastic volatility with contemporaneous jump models

Author

Listed:
  • Bertram During
  • Alexander Pitkin

Abstract

We extend the scheme developed in B. D\"uring, A. Pitkin, "High-order compact finite difference scheme for option pricing in stochastic volatility jump models", 2019, to the so-called stochastic volatility with contemporaneous jumps (SVCJ) model, derived by Duffie, Pan and Singleton. The performance of the scheme is assessed through a number of numerical experiments, using comparisons against a standard second-order central difference scheme. We observe that the new high-order compact scheme achieves fourth order convergence and discuss the effects on efficiency and computation time.

Suggested Citation

  • Bertram During & Alexander Pitkin, 2018. "High-order compact finite difference scheme for option pricing in stochastic volatility with contemporaneous jump models," Papers 1810.13248, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1810.13248
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.13248
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xubiao He & Pu Gong, 2020. "A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 999-1019, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    2. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    3. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    4. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    5. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    6. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    7. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    8. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    9. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2018. "Crash Risk in Currency Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 137-170, February.
    10. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    11. Benjamin Yibin Zhang & Hao Zhou & Haibin Zhu, 2009. "Explaining Credit Default Swap Spreads with the Equity Volatility and Jump Risks of Individual Firms," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5099-5131, December.
    12. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    13. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    14. Hong, Hui & Sung, Hao-Chang & Yang, Jingjing, 2018. "On profitability of volatility trading on S&P 500 equity index options: The role of trading frictions," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 295-307.
    15. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    16. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    17. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.
    18. Martin Keller-Ressel, 2008. "Moment Explosions and Long-Term Behavior of Affine Stochastic Volatility Models," Papers 0802.1823, arXiv.org, revised Oct 2008.
    19. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    20. Bingxin Li, 2020. "Option-implied filtering: evidence from the GARCH option pricing model," Review of Quantitative Finance and Accounting, Springer, vol. 54(3), pages 1037-1057, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.13248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.