IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.06299.html
   My bibliography  Save this paper

Economic Growth Model with Constant Pace and Dynamic Memory

Author

Listed:
  • Valentina V. Tarasova
  • Vasily E. Tarasov

Abstract

The article discusses a generalization of model of economic growth with constant pace, which takes into account the effects of dynamic memory. Memory means that endogenous or exogenous variable at a given time depends not only on their value at that time, but also on their values at previous times. To describe the dynamic memory we use derivatives of non-integer orders. We obtain the solutions of fractional differential equations with derivatives of non-integral order, which describe the dynamics of the output caused by the changes of the net investments and effects of power-law fading memory.

Suggested Citation

  • Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Economic Growth Model with Constant Pace and Dynamic Memory," Papers 1701.06299, arXiv.org, revised Apr 2019.
  • Handle: RePEc:arx:papers:1701.06299
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.06299
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
    2. Tarasova, Valentina V. & Tarasov, Vasily E., 2017. "Logistic map with memory from economic model," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 84-91.
    3. Vasily E. Tarasov & Valentina V. Tarasova, 2016. "Long and Short Memory in Economics: Fractional-Order Difference and Differentiation," Papers 1612.07903, arXiv.org, revised Aug 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    2. José A. Tenreiro Machado & Maria Eugénia Mata & António M. Lopes, 2020. "Fractional Dynamics and Pseudo-Phase Space of Country Economic Processes," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    3. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    4. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    5. Andrea Giusti & Francesco Mainardi, 2020. "Advanced Mathematical Methods: Theory and Applications," Mathematics, MDPI, vol. 8(1), pages 1-2, January.
    6. Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    7. Ivo Petráš & Ján Terpák, 2019. "Fractional Calculus as a Simple Tool for Modeling and Analysis of Long Memory Process in Industry," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
    8. Xu Wang & JinRong Wang & Michal Fečkan, 2020. "BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    9. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    10. Hao Ming & JinRong Wang & Michal Fečkan, 2019. "The Application of Fractional Calculus in Chinese Economic Growth Models," Mathematics, MDPI, vol. 7(8), pages 1-6, July.
    11. Tomas Skovranek, 2019. "The Mittag-Leffler Fitting of the Phillips Curve," Mathematics, MDPI, vol. 7(7), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    2. Valentina V. Tarasova & Vasily E. Tarasov, 2016. "Fractional Dynamics of Natural Growth and Memory Effect in Economics," Papers 1612.09060, arXiv.org, revised Jan 2017.
    3. Vasily E. Tarasov, 2020. "Exact Solutions of Bernoulli and Logistic Fractional Differential Equations with Power Law Coefficients," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    4. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Dynamic intersectoral models with power-law memory," Papers 1712.09087, arXiv.org.
    5. Vasily E. Tarasov & Valentina V. Tarasova, 2017. "Accelerators in Macroeconomics: Comparison of Discrete and Continuous Approaches," American Journal of Economics and Business Administration, Science Publications, vol. 9(3), pages 47-55, November.
    6. Nosrati, Komeil & Shafiee, Masoud, 2018. "Fractional-order singular logistic map: Stability, bifurcation and chaos analysis," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 224-238.
    7. Ahmed Alsaedi & Ravi P. Agarwal & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "Fractional-Order Integro-Differential Multivalued Problems with Fixed and Nonlocal Anti-Periodic Boundary Conditions," Mathematics, MDPI, vol. 8(10), pages 1-16, October.
    8. Tarasov, V.E., 2021. "Nonlinear fractional dynamics with Kicks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    10. Vasily E. Tarasov, 2021. "Integral Equations of Non-Integer Orders and Discrete Maps with Memory," Mathematics, MDPI, vol. 9(11), pages 1-12, May.
    11. Vasily E. Tarasov, 2021. "General Fractional Dynamics," Mathematics, MDPI, vol. 9(13), pages 1-26, June.
    12. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    13. Yousefpour, Amin & Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Wei, Zhouchao, 2020. "A fractional-order hyper-chaotic economic system with transient chaos," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    14. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    15. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Accelerators in macroeconomics: Comparison of discrete and continuous approaches," Papers 1712.09605, arXiv.org.
    16. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    17. Dipak Kumar Jana & Asim Kumar Das & Sahidul Islam, 2024. "Effect of memory on an inventory model for deteriorating item: fractional calculus approach," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 2360-2378, December.
    18. Area, I. & Nieto, J.J., 2021. "Power series solution of the fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. José A. Tenreiro Machado & Maria Eugénia Mata & António M. Lopes, 2020. "Fractional Dynamics and Pseudo-Phase Space of Country Economic Processes," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    20. Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.06299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.