IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.07074.html
   My bibliography  Save this paper

On random convex analysis

Author

Listed:
  • Tiexin Guo
  • Erxin Zhang
  • Mingzhi Wu
  • Bixuan Yang
  • George Yuan
  • Xiaolin Zeng

Abstract

Recently, based on the idea of randomizing space theory, random convex analysis has been being developed in order to deal with the corresponding problems in random environments such as analysis of conditional convex risk measures and the related variational problems and optimization problems. Random convex analysis is convex analysis over random locally convex modules. Since random locally convex modules have the more complicated topological and algebraic structures than ordinary locally convex spaces, establishing random convex analysis will encounter harder mathematical challenges than classical convex analysis so that there are still a lot of fundamentally important unsolved problems in random convex analysis. This paper is devoted to solving some important theoretic problems. First, we establish the inferior limit behavior of a proper lower semicontinuous $L^0$--convex function on a random locally convex module endowed with the locally $L^0$--convex topology, which makes perfect the Fenchel--Moreau duality theorem for such functions. Then, we investigate the relations among continuity, locally $L^0$--Lipschitzian continuity and almost surely sequent continuity of a proper $L^0$--convex function. And then, we establish the elegant relationships among subdifferentiability, G\^ateaux--differentiability and Fr\'ech\'et--differentiability for a proper $L^0$--convex function defined on random normed modules. At last, based on the Ekeland's variational principle for a proper lower semicontinuous $\bar{L}^0$--valued function, we show that $\varepsilon$--subdifferentials can be approximated by subdifferentials. We would like to emphasize that the success of this paper lies in simultaneously considering the $(\varepsilon, \lambda)$--topology and the locally $L^0$--convex topology for a random locally convex module.

Suggested Citation

  • Tiexin Guo & Erxin Zhang & Mingzhi Wu & Bixuan Yang & George Yuan & Xiaolin Zeng, 2016. "On random convex analysis," Papers 1603.07074, arXiv.org, revised Sep 2017.
  • Handle: RePEc:arx:papers:1603.07074
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.07074
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    3. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    4. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    5. repec:hum:wpaper:sfb649dp2005-006 is not listed on IDEAS
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    2. Alessandro Doldi & Marco Frittelli, 2020. "Conditional Systemic Risk Measures," Papers 2010.11515, arXiv.org, revised May 2021.
    3. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    4. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    5. Föllmer Hans, 2014. "Spatial risk measures and their local specification: The locally law-invariant case," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 79-101, March.
    6. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    7. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    8. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Dec 2024.
    9. Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    11. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    12. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    13. Daniel Lacker, 2015. "Law invariant risk measures and information divergences," Papers 1510.07030, arXiv.org, revised Jun 2016.
    14. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    15. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    16. c{C}au{g}{i}n Ararat & Bar{i}c{s} Bilir & Elisa Mastrogiacomo, 2022. "Decomposable sums and their implications on naturally quasiconvex risk measures," Papers 2201.05686, arXiv.org.
    17. Dejian Tian & Xunlian Wang, 2023. "Dynamic star-shaped risk measures and $g$-expectations," Papers 2305.02481, arXiv.org.
    18. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    19. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    20. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.07074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.