IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1404.4150.html
   My bibliography  Save this paper

The Master Equation in Mean Field Theory

Author

Listed:
  • Alain Bensoussan
  • Jens Frehse
  • Phillip Yam

Abstract

In his lectures at College de France, P.L. Lions introduced the concept of Master equation, see [5] for Mean Field Games. It is introduced in a heuristic fashion, from the system of partial differential equations, associated to a Nash equilibrium for a large, but finite, number of players. The method, also explained in[2], consists in a formal analogy of terms. The interest of this equation is that it contains interesting particular cases, which can be studied directly, in particular the system of HJB-FP (Hamilton-Jacobi-Bellman, Fokker-Planck) equations obtained as the limit of the finite Nash equilibrium game, when the trajectories are independent, see [4]. Usually, in mean field theory, one can bypass the large Nash equilibrium, by introducing the concept of representative agent, whose action is influenced by a distribution of similar agents, and obtains directly the system of HJB-FP equations of interest, see for instance [1]. Apparently, there is no such approach for the Master equation. We show here that it is possible. We first do it for the Mean Field type control problem, for which we interpret completely the Master equation. For the Mean Field Games itself, we solve a related problem, and obtain again the Master equation.

Suggested Citation

  • Alain Bensoussan & Jens Frehse & Phillip Yam, 2014. "The Master Equation in Mean Field Theory," Papers 1404.4150, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1404.4150
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1404.4150
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahuja, Saran & Ren, Weiluo & Yang, Tzu-Wei, 2019. "Forward–backward stochastic differential equations with monotone functionals and mean field games with common noise," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3859-3892.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.4150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.