IDEAS home Printed from
   My bibliography  Save this paper

Stochastic Evolution of Stock Market Volume-Price Distributions


  • Paulo Rocha
  • Frank Raischel
  • Jo~ao P. da Cruz
  • Pedro G. Lind


Using available data from the New York stock market (NYSM) we test four different bi-parametric models to fit the correspondent volume-price distributions at each $10$-minute lag: the Gamma distribution, the inverse Gamma distribution, the Weibull distribution and the log-normal distribution. The volume-price data, which measures market capitalization, appears to follow a specific statistical pattern, other than the evolution of prices measured in similar studies. We find that the inverse Gamma model gives a superior fit to the volume-price evolution than the other models. We then focus on the inverse Gamma distribution as a model for the NYSM data and analyze the evolution of the pair of distribution parameters as a stochastic process. Assuming that the evolution of these parameters is governed by coupled Langevin equations, we derive the corresponding drift and diffusion coefficients, which then provide insight for understanding the mechanisms underlying the evolution of the stock market.

Suggested Citation

  • Paulo Rocha & Frank Raischel & Jo~ao P. da Cruz & Pedro G. Lind, 2014. "Stochastic Evolution of Stock Market Volume-Price Distributions," Papers 1404.1730,, revised Oct 2014.
  • Handle: RePEc:arx:papers:1404.1730

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583,, revised Mar 2013.
    2. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    3. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    4. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929,, revised Feb 2013.
    5. Haydyn Brown & David Hobson & L. C. G. Rogers, 2001. "Robust Hedging of Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 285-314.
    6. David Hobson & Peter Laurence & Tai-Ho Wang, 2005. "Static-arbitrage upper bounds for the prices of basket options," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 329-342.
    7. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    8. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2013. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
    9. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    10. Hobson, David & Laurence, Peter & Wang, Tai-Ho, 2005. "Static-arbitrage optimal subreplicating strategies for basket options," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 553-572, December.
    11. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14.
    12. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.1730. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.