IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1204.1583.html
   My bibliography  Save this paper

Description of the Operational Mechanics of a Basel Regulated Banking System

Author

Listed:
  • Jacky Mallett

Abstract

This paper presents a description of the mechanical operations of banking as used in modern banking systems regulated under the Basel Accords, in order to provide support for a verifiable and complete description of the banking system suitable for computer simulation. Feedback is requested on the contents of this document, both with respect to the operations described here, and any known national, regional or local variations in their structure and practice.

Suggested Citation

  • Jacky Mallett, 2012. "Description of the Operational Mechanics of a Basel Regulated Banking System," Papers 1204.1583, arXiv.org.
  • Handle: RePEc:arx:papers:1204.1583
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1204.1583
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Lanne, Markku, 2007. "Forecasting realized exchange rate volatility by decomposition," International Journal of Forecasting, Elsevier, vol. 23(2), pages 307-320.
    4. Peter Reinhard Hansen & Zhuo Huang, 2016. "Exponential GARCH Modeling With Realized Measures of Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
    5. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    7. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    8. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    9. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    10. Pun, Chi Seng & Chung, Shing Fung & Wong, Hoi Ying, 2015. "Variance swap with mean reversion, multifactor stochastic volatility and jumps," European Journal of Operational Research, Elsevier, vol. 245(2), pages 571-580.
    11. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    13. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    14. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    15. Antoniou, I. & Gustafson, K., 1999. "Wavelets and stochastic processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 49(1), pages 81-104.
    16. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    17. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    18. Buckley, Winston S. & Long, Hongwei, 2015. "A discontinuous mispricing model under asymmetric information," European Journal of Operational Research, Elsevier, vol. 243(3), pages 944-955.
    19. Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
    20. Yang, Jian & Bessler, David A., 2008. "Contagion around the October 1987 stock market crash," European Journal of Operational Research, Elsevier, vol. 184(1), pages 291-310, January.
    21. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    22. Christodoulakis, George A., 2007. "Common volatility and correlation clustering in asset returns," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1263-1284, November.
    23. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    24. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    25. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    26. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacky Mallett, 2013. "An examination of the effect on the Icelandic Banking System of Ver{\dh}trygg{\dh} L\'{a}n (Indexed-Linked Loans)," Papers 1302.4112, arXiv.org, revised Apr 2014.
    2. Jacky Mallett, 2015. "Threadneedle: An Experimental Tool for the Simulation and Analysis of Fractional Reserve Banking Systems," Papers 1502.06163, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.1583. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.