IDEAS home Printed from
   My bibliography  Save this paper

Random matrix approach to the dynamics of stock inventory variations


  • W. -X. Zhou


  • G. -H. Mu


  • J. Kert'esz



We study the cross-correlation matrix $C_{ij}$ of inventory variations of the most active individual and institutional investors in an emerging market to understand the dynamics of inventory variations. We find that the distribution of cross-correlation coefficient $C_{ij}$ has a power-law form in the bulk followed by exponential tails and there are more positive coefficients than negative ones. In addition, it is more possible that two individuals or two institutions have stronger inventory variation correlation than one individual and one institution. We find that the largest and the second largest eigenvalues ($\lambda_1$ and $\lambda_2$) of the correlation matrix cannot be explained by the random matrix theory and the projection of inventory variations on the first eigenvector $u(\lambda_1)$ are linearly correlated with stock returns, where individual investors play a dominating role. The investors are classified into three categories based on the cross-correlation coefficients $C_{VR}$ between inventory variations and stock returns. Half individuals are reversing investors who exhibit evident buy and sell herding behaviors, while 6% individuals are trending investors. For institutions, only 10% and 8% investors are trending and reversing investors. A strong Granger causality is unveiled from stock returns to inventory variations, which means that a large proportion of individuals hold the reversing trading strategy and a small part of individuals hold the trending strategy. Comparing with the case of Spanish market, Chinese investors exhibit common and market-specific behaviors. Our empirical findings have scientific significance in the understanding of investors' trading behaviors and in the construction of agent-based models for stock markets.

Suggested Citation

  • W. -X. Zhou & G. -H. Mu & J. Kert'esz, 2012. "Random matrix approach to the dynamics of stock inventory variations," Papers 1201.0433,
  • Handle: RePEc:arx:papers:1201.0433

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    2. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    3. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    4. Koenker, Roger, 1988. "Asymptotic Theory and Econometric Practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(2), pages 139-147, April.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    7. Christopher L. Foote & Christopher F. Goetz, 2008. "The Impact of Legalized Abortion on Crime: Comment," The Quarterly Journal of Economics, Oxford University Press, vol. 123(1), pages 407-423.
    8. Donald W.K. Andrews & Xu Cheng & Patrik Guggenberger, 2011. "Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests," Cowles Foundation Discussion Papers 1813, Cowles Foundation for Research in Economics, Yale University.
    9. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.0433. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.